Maximum principle for elliptic operators and applications
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 6, page 815-870
- ISSN: 0294-1449
Access Full Article
topHow to cite
topTahraoui, Rabah. "Maximum principle for elliptic operators and applications." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 815-870. <http://eudml.org/doc/78563>.
@article{Tahraoui2002,
author = {Tahraoui, Rabah},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {maximum principle; positive solution; radial shape function; ellipsoidal shape function; localization of critical points},
language = {eng},
number = {6},
pages = {815-870},
publisher = {Elsevier},
title = {Maximum principle for elliptic operators and applications},
url = {http://eudml.org/doc/78563},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Tahraoui, Rabah
TI - Maximum principle for elliptic operators and applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 815
EP - 870
LA - eng
KW - maximum principle; positive solution; radial shape function; ellipsoidal shape function; localization of critical points
UR - http://eudml.org/doc/78563
ER -
References
top- [1] Brezis H., Analyse fonctionnelle. Théorie et applications, Masson, 1983. Zbl0511.46001MR697382
- [2] Chong K.M., Rice N.M., Equimeasurable Rearrangements of Functions, Queen's Papers in Pure and Applied Mathematics, 28, Queen's University, Ontario, 1971. Zbl0275.46024MR372140
- [3] Diaz J.I., Kawhol B., On convexity and starshapdness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl.177 (1993) 263-286. Zbl0802.35087MR1224819
- [4] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19. Zbl0902.35002
- [5] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer Verlag, 1983. Zbl0562.35001MR737190
- [6] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., 1150, Springer, 1985. Zbl0593.35002MR810619
- [7] Lewis J.L., Capacitary functions in convex rings, Arch. Rational Mech. Anal.66 (1977) 201-224. Zbl0393.46028MR477094
- [8] Mossino J., Inégalités isopérimétriques et applications en physique. Travaux en cours, Hermann, Paris, 1984. Zbl0537.35002MR733257
- [9] Protter M., Weinberger H., Maximum Principles in Differential Equations, Prentice-Hall, 1967. Zbl0153.13602MR219861
- [10] Sperb R., Maximum Principles and Their Applications, Academic Press, 1981. Zbl0454.35001MR615561
- [11] Stampacchia G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier15 (1965) 189-258. Zbl0151.15401MR192177
- [12] Tahraoui R., Contrôle optimal dans les équations elliptiques, SIAM J. Control Optim.3 (1992) 465-521. Zbl0771.49002MR1160140
- [13] Tahraoui R., Sur le principe du maximum des opérateurs elliptiques, C. R. Acad. Sci. Paris, Série I320 (1995) 1453-1458. Zbl0849.47023MR1340052
- [14] Tahraoui R., Générateurs infinitésimaux et propriétés géométriques pour certaines équations complètement non linéaires, Revista Matemática Iberoamericana11 (3) (1995). Zbl0847.35022MR1363208
- [15] Tahraoui R., Principe de comparaison pour opérateurs elliptiques, C. R. Acad. Sci. Paris, Série I322 (1996) 1053-1056. Zbl0861.47026MR1396639
- [16] R. Tahraoui, Star-shapedeness of solutions of some semi-linear problems, Work in preparation.
- [17] L. Tartar, Estimations fines des coefficients homogénéisés, in: Ennio de Giorgi Colloquium, Vol. 125, Pitman, pp. 168–187. Zbl0586.35004MR909716
- [18] Cohn D.L., Measure Theory, Birkhäuser, Boston, 1980. Zbl0436.28001MR578344
- [19] Flores-Bazán F., Cellina A., Radially symmetric solutions of a class of problems of the calculus of variations without convexity assumptions, Ann. I. H. Poincaré AN9 (1992) 465-478. Zbl0757.49008MR1186686
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.