Multi-bump ground states of the Gierer–Meinhardt system in R2
Manuel del Pino; Michał Kowalczyk; Juncheng Wei
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 1, page 53-85
- ISSN: 0294-1449
Access Full Article
topHow to cite
topdel Pino, Manuel, Kowalczyk, Michał, and Wei, Juncheng. "Multi-bump ground states of the Gierer–Meinhardt system in R2." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 53-85. <http://eudml.org/doc/78574>.
@article{delPino2003,
author = {del Pino, Manuel, Kowalczyk, Michał, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Multi-bump solutions; Gierer-Meinhardt system; pattern formation},
language = {eng},
number = {1},
pages = {53-85},
publisher = {Elsevier},
title = {Multi-bump ground states of the Gierer–Meinhardt system in R2},
url = {http://eudml.org/doc/78574},
volume = {20},
year = {2003},
}
TY - JOUR
AU - del Pino, Manuel
AU - Kowalczyk, Michał
AU - Wei, Juncheng
TI - Multi-bump ground states of the Gierer–Meinhardt system in R2
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 53
EP - 85
LA - eng
KW - Multi-bump solutions; Gierer-Meinhardt system; pattern formation
UR - http://eudml.org/doc/78574
ER -
References
top- [1] Chen X., Kowalczyk M., Dynamics of an interior spike in the Gierer–Meinhardt system, SIAM J. Math. Anal.33 (1) (2001) 172-193. Zbl0993.35012MR1858874
- [2] M. del Pino, P.L. Felmer, M. Kowalczyk, Boundary spikes in the Gierer–Meinhardt system, Asymptotic Anal., to appear. Zbl1163.35354
- [3] del Pino M., Kowalczyk M., Chen X., The Gierer–Meinhardt system: the breaking of symmetry of homoclinics and multi-bump ground states, Comm. Contemp. Math.3 (3) (2001) 419-439. Zbl1003.34025MR1849649
- [4] Doelman A., Gardner R.A., Kaper T.J., Large stable pulse solutions in reaction–diffusion equations, Indiana Univ. Math. J.50 (5) (2001) 443-507. Zbl0994.35058MR1857043
- [5] Gierer A., Meinhardt H., A theory of biological pattern formation, Kybernetik (Berlin)12 (1972) 30-39. Zbl0297.92007
- [6] Ghoussoub C., Gui C., Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z.229 (1998) 443-474. Zbl0955.35024MR1658569
- [7] Ghoussoub C., Gui C., Zhu M., On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations26 (2001) 1929-1946. Zbl0997.35021MR1876408
- [8] Gui C., Multi-peak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
- [9] C. Gui, C.-S. Lin, Estimates for boundary-bubbling solutions to an elliptic Neumann problem, to appear. Zbl1136.35380MR1900999
- [10] Gui C., Wei J., Multiple interior peak solutions for some singular perturbation problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
- [11] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
- [12] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 47-82. Zbl0944.35020MR1743431
- [13] Iron D., Ward M., Wei J., The stability of spike solutions to the one-dimensional Gierer–Meinhardt model, Phys. D.150 (1–2) (2001) 25-62. Zbl0983.35020MR1818735
- [14] Kowalczyk M., Multiple spike layers in the shadow Gierer–Meinhardt system: existence of equilibria and approximate invariant manifold, Duke Math. J.98 (1999) 59-111. Zbl0962.35063MR1687412
- [15] Keener J.P., Activators and inhibitors in pattern formation, Stud. Appl. Math.59 (1978) 1-23. Zbl0407.92023MR479051
- [16] Lin C.-S., Ni W.-M., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
- [17] Meinhardt H., The Algorithmic Beauty of Sea Shells, Springer, Berlin, 1998. Zbl1011.00506MR1325695
- [18] Meinhardt H., Models of Biological Pattern Formation, Academic Press, London, 1982.
- [19] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices of Amer. Math. Soc.45 (1998) 9-18. Zbl0917.35047MR1490535
- [20] Ni W.-M., Takagi I., On the Neumann problem for some semilinear elliptic equations and systems of activator–inhibitor type, Trans. Amer. Math. Soc.297 (1986) 351-368. Zbl0635.35031MR849484
- [21] Ni W.-M., Takagi I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math.41 (1991) 819-851. Zbl0754.35042MR1115095
- [22] Ni W.-M., Takagi I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
- [23] Ni W.-M., Takagi I., Point-condensation generated by a reaction–diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math.12 (1995) 327-365. Zbl0843.35006MR1337211
- [24] Ni W.-M., Pan X.-B., Takagi I., Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J.67 (1992) 1-20. Zbl0785.35041MR1174600
- [25] W.-M. Ni, I. Takagi, E. Yanagida, Stability analysis of point-condensation solutions to a reaction–diffusion system proposed by Gierer–Meinhardt, Tohoku Math. J., to appear.
- [26] Ni W.-M., Takagi I., Yanagida E., Stability of least energy patterns of the shadow system for an activator–inhibitor model, Japan J. Indust. Appl. Math.18 (2) (2001) 259-272. Zbl1200.35172MR1842911
- [27] W.-M. Ni, I. Takagi, J. Wei, E. Yanagida, in preparartion.
- [28] Nishiura Y., Global structure of bifurcating solutions of some reaction–diffusion systems, SIAM J. Math. Anal.13 (1982) 555-593. Zbl0501.35010MR661590
- [29] Takagi I., Point-condensation for a reaction–diffusion system, J. Differential Equations61 (1986) 208-249. Zbl0627.35049MR823402
- [30] Turing A.M., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B237 (1952) 37-72.
- [31] Wei J., On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
- [32] Wei J., Uniqueness and eigenvalue estimates of boundary spike solutions, Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 1457-1480. Zbl1112.35304MR1869645
- [33] Wei J., On single interior spike solutions of Gierer–Meinhardt system: uniqueness and spectrum estimates, European J. Appl. Math.10 (1999) 353-378. Zbl1014.35005MR1713076
- [34] Wei J., Point-condensations generated by Gierer–Meinhardt system: a brief survey, in: Morita Y., Ninomiya H., Yanagida E., Yotsutani S. (Eds.), New Trends in Nonlinear Partial Differential Equations, 2000, pp. 46-59.
- [35] Wei J., Winter M., On the two-dimensional Gierer–Meinhardt system with strong coupling, SIAM J. Math. Anal.30 (1999) 1241-1263. Zbl0955.35006MR1718301
- [36] Wei J., Winter M., On multiple spike solutions for the two-dimensional Gierer–Meinhardt system: the strong coupling case, J. Differential Equations178 (2002) 478-518. Zbl1042.35005MR1879835
- [37] Wei J., Winter M., Spikes for the two-dimensional Gierer–Meinhardt system: the weak coupling case, J. Nonlinear Science6 (2001) 415-458. Zbl1141.35345MR1871278
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.