Multi-bump ground states of the Gierer–Meinhardt system in R2

Manuel del Pino; Michał Kowalczyk; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 53-85
  • ISSN: 0294-1449

How to cite

top

del Pino, Manuel, Kowalczyk, Michał, and Wei, Juncheng. "Multi-bump ground states of the Gierer–Meinhardt system in R2." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 53-85. <http://eudml.org/doc/78574>.

@article{delPino2003,
author = {del Pino, Manuel, Kowalczyk, Michał, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Multi-bump solutions; Gierer-Meinhardt system; pattern formation},
language = {eng},
number = {1},
pages = {53-85},
publisher = {Elsevier},
title = {Multi-bump ground states of the Gierer–Meinhardt system in R2},
url = {http://eudml.org/doc/78574},
volume = {20},
year = {2003},
}

TY - JOUR
AU - del Pino, Manuel
AU - Kowalczyk, Michał
AU - Wei, Juncheng
TI - Multi-bump ground states of the Gierer–Meinhardt system in R2
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 53
EP - 85
LA - eng
KW - Multi-bump solutions; Gierer-Meinhardt system; pattern formation
UR - http://eudml.org/doc/78574
ER -

References

top
  1. [1] Chen X., Kowalczyk M., Dynamics of an interior spike in the Gierer–Meinhardt system, SIAM J. Math. Anal.33 (1) (2001) 172-193. Zbl0993.35012MR1858874
  2. [2] M. del Pino, P.L. Felmer, M. Kowalczyk, Boundary spikes in the Gierer–Meinhardt system, Asymptotic Anal., to appear. Zbl1163.35354
  3. [3] del Pino M., Kowalczyk M., Chen X., The Gierer–Meinhardt system: the breaking of symmetry of homoclinics and multi-bump ground states, Comm. Contemp. Math.3 (3) (2001) 419-439. Zbl1003.34025MR1849649
  4. [4] Doelman A., Gardner R.A., Kaper T.J., Large stable pulse solutions in reaction–diffusion equations, Indiana Univ. Math. J.50 (5) (2001) 443-507. Zbl0994.35058MR1857043
  5. [5] Gierer A., Meinhardt H., A theory of biological pattern formation, Kybernetik (Berlin)12 (1972) 30-39. Zbl0297.92007
  6. [6] Ghoussoub C., Gui C., Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z.229 (1998) 443-474. Zbl0955.35024MR1658569
  7. [7] Ghoussoub C., Gui C., Zhu M., On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations26 (2001) 1929-1946. Zbl0997.35021MR1876408
  8. [8] Gui C., Multi-peak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
  9. [9] C. Gui, C.-S. Lin, Estimates for boundary-bubbling solutions to an elliptic Neumann problem, to appear. Zbl1136.35380MR1900999
  10. [10] Gui C., Wei J., Multiple interior peak solutions for some singular perturbation problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
  11. [11] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
  12. [12] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 47-82. Zbl0944.35020MR1743431
  13. [13] Iron D., Ward M., Wei J., The stability of spike solutions to the one-dimensional Gierer–Meinhardt model, Phys. D.150 (1–2) (2001) 25-62. Zbl0983.35020MR1818735
  14. [14] Kowalczyk M., Multiple spike layers in the shadow Gierer–Meinhardt system: existence of equilibria and approximate invariant manifold, Duke Math. J.98 (1999) 59-111. Zbl0962.35063MR1687412
  15. [15] Keener J.P., Activators and inhibitors in pattern formation, Stud. Appl. Math.59 (1978) 1-23. Zbl0407.92023MR479051
  16. [16] Lin C.-S., Ni W.-M., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
  17. [17] Meinhardt H., The Algorithmic Beauty of Sea Shells, Springer, Berlin, 1998. Zbl1011.00506MR1325695
  18. [18] Meinhardt H., Models of Biological Pattern Formation, Academic Press, London, 1982. 
  19. [19] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices of Amer. Math. Soc.45 (1998) 9-18. Zbl0917.35047MR1490535
  20. [20] Ni W.-M., Takagi I., On the Neumann problem for some semilinear elliptic equations and systems of activator–inhibitor type, Trans. Amer. Math. Soc.297 (1986) 351-368. Zbl0635.35031MR849484
  21. [21] Ni W.-M., Takagi I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math.41 (1991) 819-851. Zbl0754.35042MR1115095
  22. [22] Ni W.-M., Takagi I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
  23. [23] Ni W.-M., Takagi I., Point-condensation generated by a reaction–diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math.12 (1995) 327-365. Zbl0843.35006MR1337211
  24. [24] Ni W.-M., Pan X.-B., Takagi I., Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J.67 (1992) 1-20. Zbl0785.35041MR1174600
  25. [25] W.-M. Ni, I. Takagi, E. Yanagida, Stability analysis of point-condensation solutions to a reaction–diffusion system proposed by Gierer–Meinhardt, Tohoku Math. J., to appear. 
  26. [26] Ni W.-M., Takagi I., Yanagida E., Stability of least energy patterns of the shadow system for an activator–inhibitor model, Japan J. Indust. Appl. Math.18 (2) (2001) 259-272. Zbl1200.35172MR1842911
  27. [27] W.-M. Ni, I. Takagi, J. Wei, E. Yanagida, in preparartion. 
  28. [28] Nishiura Y., Global structure of bifurcating solutions of some reaction–diffusion systems, SIAM J. Math. Anal.13 (1982) 555-593. Zbl0501.35010MR661590
  29. [29] Takagi I., Point-condensation for a reaction–diffusion system, J. Differential Equations61 (1986) 208-249. Zbl0627.35049MR823402
  30. [30] Turing A.M., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B237 (1952) 37-72. 
  31. [31] Wei J., On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
  32. [32] Wei J., Uniqueness and eigenvalue estimates of boundary spike solutions, Proc. Roy. Soc. Edinburgh Sect. A131 (2001) 1457-1480. Zbl1112.35304MR1869645
  33. [33] Wei J., On single interior spike solutions of Gierer–Meinhardt system: uniqueness and spectrum estimates, European J. Appl. Math.10 (1999) 353-378. Zbl1014.35005MR1713076
  34. [34] Wei J., Point-condensations generated by Gierer–Meinhardt system: a brief survey, in: Morita Y., Ninomiya H., Yanagida E., Yotsutani S. (Eds.), New Trends in Nonlinear Partial Differential Equations, 2000, pp. 46-59. 
  35. [35] Wei J., Winter M., On the two-dimensional Gierer–Meinhardt system with strong coupling, SIAM J. Math. Anal.30 (1999) 1241-1263. Zbl0955.35006MR1718301
  36. [36] Wei J., Winter M., On multiple spike solutions for the two-dimensional Gierer–Meinhardt system: the strong coupling case, J. Differential Equations178 (2002) 478-518. Zbl1042.35005MR1879835
  37. [37] Wei J., Winter M., Spikes for the two-dimensional Gierer–Meinhardt system: the weak coupling case, J. Nonlinear Science6 (2001) 415-458. Zbl1141.35345MR1871278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.