Clustered solutions around harmonic centers to a coupled elliptic system
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 4, page 605-628
- ISSN: 0294-1449
Access Full Article
topHow to cite
topD'Aprile, Teresa, and Wei, Juncheng. "Clustered solutions around harmonic centers to a coupled elliptic system." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 605-628. <http://eudml.org/doc/78752>.
@article{DAprile2007,
author = {D'Aprile, Teresa, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Maxwell-Schrödinger; optimal configuration; localized energy method},
language = {eng},
number = {4},
pages = {605-628},
publisher = {Elsevier},
title = {Clustered solutions around harmonic centers to a coupled elliptic system},
url = {http://eudml.org/doc/78752},
volume = {24},
year = {2007},
}
TY - JOUR
AU - D'Aprile, Teresa
AU - Wei, Juncheng
TI - Clustered solutions around harmonic centers to a coupled elliptic system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 605
EP - 628
LA - eng
KW - Maxwell-Schrödinger; optimal configuration; localized energy method
UR - http://eudml.org/doc/78752
ER -
References
top- [1] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal.140 (1997) 285-300. Zbl0896.35042MR1486895
- [2] Ambrosetti A., Malchiodi A., Secchi S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Rational Mech. Anal.159 (3) (2001) 253-271. Zbl1040.35107MR1857674
- [3] Ambrosetti A., Malchiodi A., Ni W.M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys.235 (3) (2003) 427-466. Zbl1072.35019MR1974510
- [4] Ambrosetti A., Malchiodi A., Ni W.M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, II, Indiana Univ. Math. J.53 (2) (2004) 297-329. Zbl1081.35008MR2056434
- [5] Bandle C., Flucher M., Harmonic radius and concentration of energy, hyperbolic radius and Liouville’s equations, and , SIAM Rev.38 (2) (1996) 191-238. Zbl0857.35034MR1391227
- [6] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal.11 (2) (1998) 283-293. Zbl0926.35125
- [7] Cardaliguet P., Rabah T., On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl.81 (3) (2002) 223-240. Zbl1027.31003MR1894062
- [8] Chen X., Del Pino M., Kowalczyk M., The Gierer & Meinhardt system: the breaking of homopclinics and multi-bump ground states, Commun. Contemp. Math.3 (3) (2001) 419-439. Zbl1003.34025MR1849649
- [9] Chen C.C., Lin C.S., Uniqueness of the ground state solution of in , , Comm. Partial Differential Equations16 (8–9) (1991) 1549-1572. Zbl0753.35034
- [10] Coclite G.M., Georgiev V., Solitary waves for Maxwell–Schrödinger equations, Electronic J. Differential Equations2004 (94) (2004) 1-31. Zbl1064.35180
- [11] Dancer E.N., A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc.61 (2000) 305-312. Zbl0945.35031MR1748710
- [12] Dancer E.N., Wei J., On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A127 (4) (1997) 691-701. Zbl0882.35052MR1465415
- [13] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.189 (2) (1999) 241-262. Zbl0933.35070MR1696122
- [14] D'Aprile T., Mugnai D., Existence of solitary waves for the nonlinear Klein–Gordon Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A134 (5) (2004) 893-906. Zbl1064.35182
- [15] D'Aprile T., Wei J., On bound states concentrating on spheres for the Maxwell–Schrödinger equation, SIAM J. Math. Anal.37 (1) (2005) 321-342. Zbl1096.35017
- [16] D'Aprile T., Wei J., Standing waves in the Maxwell–Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations25 (1) (2006) 105-137. Zbl1207.35129
- [17] Del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations4 (2) (1996) 121-137. Zbl0844.35032MR1379196
- [18] Del Pino M., Felmer P., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (2) (1998) 127-149. Zbl0901.35023MR1614646
- [19] Del Pino M., Felmer P., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal.149 (1) (1997) 245-265. Zbl0887.35058MR1471107
- [20] Del Pino M., Felmer P., Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann.324 (1) (2002) 1-32. Zbl1030.35031MR1931757
- [21] Del Pino M., Kowalczyk M., Wei J., Multi-bump ground states for the Gierer–Meinhardt system in , Ann. Inst. H. Poincaré Anal. Non Linéaire20 (1) (2003) 53-85. Zbl1114.35065
- [22] Evans L.C., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
- [23] Floer A., Weinstein A., Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (3) (1986) 397-408. Zbl0613.35076MR867665
- [24] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in , Adv. Math. Suppl. Stud.7A (1981) 369-402. Zbl0469.35052MR634248
- [25] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2001. Zbl0361.35003MR1814364
- [26] Grossi M., Some results on a class of nonlinear Schrödinger equations, Math. Z.235 (4) (2000) 687-705. Zbl0970.35039MR1801580
- [27] Gui C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J.84 (3) (1996) 739-769. Zbl0866.35039MR1408543
- [28] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (3) (2000) 522-538. Zbl0949.35052MR1758231
- [29] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (1) (2000) 47-82. Zbl0944.35020MR1743431
- [30] Hardin D.P., Saff E.B., Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc.51 (10) (2004) 1186-1194. Zbl1095.49031MR2104914
- [31] Helms L.L., Introduction to Potential Theory, John Wiley & Sons Inc., New York, 1969. Zbl0188.17203MR261018
- [32] Jeanjean L., Tanaka K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations21 (3) (2004) 287-318. Zbl1060.35012MR2094325
- [33] Kang X., Wei J., On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations5 (7–9) (2000) 899-928. Zbl1217.35065
- [34] Kwong M.K., Uniqueness of positive solutions of in , Arch. Rational Mech. Anal.105 (3) (1989) 243-266. Zbl0676.35032MR969899
- [35] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Differential Equations6 (2) (1997) 955-980. Zbl1023.35500MR1606351
- [36] Ni W.M., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.44 (7) (1991) 819-851. Zbl0754.35042MR1115095
- [37] Oh Y.J., Existence of semi-classical bound states of nonlinear Schrödinger equation with potential on the class , Comm. Partial Differential Equations13 (12) (1988) 1499-1519. Zbl0702.35228MR970154
- [38] Pistoia A., Multi-peak solutions for a class of nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl.9 (1) (2002) 69-91. Zbl1001.35030MR1891696
- [39] Rabinowitz P., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (2) (1992) 270-291. Zbl0763.35087MR1162728
- [40] Ruiz D., Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci.15 (1) (2005) 141-164. Zbl1074.81023
- [41] Wang X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys.153 (2) (1993) 229-244. Zbl0795.35118MR1218300
- [42] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (2) (1996) 315-333. Zbl0865.35011MR1404386
- [43] J. Wei, M. Winter, Symmetric and asymmetric multiple clusters in a reaction-diffusion system, NoDEA Nonlinear Differential Equations Appl., in press. Zbl1137.34318MR2374210
- [44] Wei J., Winter M., Clustered spots in the FitzHugh–Nagumo system, J. Differential Equations213 (1) (2005) 121-145. Zbl1330.35022
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.