Clustered solutions around harmonic centers to a coupled elliptic system

Teresa D'Aprile; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 4, page 605-628
  • ISSN: 0294-1449

How to cite

top

D'Aprile, Teresa, and Wei, Juncheng. "Clustered solutions around harmonic centers to a coupled elliptic system." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 605-628. <http://eudml.org/doc/78752>.

@article{DAprile2007,
author = {D'Aprile, Teresa, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Maxwell-Schrödinger; optimal configuration; localized energy method},
language = {eng},
number = {4},
pages = {605-628},
publisher = {Elsevier},
title = {Clustered solutions around harmonic centers to a coupled elliptic system},
url = {http://eudml.org/doc/78752},
volume = {24},
year = {2007},
}

TY - JOUR
AU - D'Aprile, Teresa
AU - Wei, Juncheng
TI - Clustered solutions around harmonic centers to a coupled elliptic system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 605
EP - 628
LA - eng
KW - Maxwell-Schrödinger; optimal configuration; localized energy method
UR - http://eudml.org/doc/78752
ER -

References

top
  1. [1] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal.140 (1997) 285-300. Zbl0896.35042MR1486895
  2. [2] Ambrosetti A., Malchiodi A., Secchi S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Rational Mech. Anal.159 (3) (2001) 253-271. Zbl1040.35107MR1857674
  3. [3] Ambrosetti A., Malchiodi A., Ni W.M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys.235 (3) (2003) 427-466. Zbl1072.35019MR1974510
  4. [4] Ambrosetti A., Malchiodi A., Ni W.M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, II, Indiana Univ. Math. J.53 (2) (2004) 297-329. Zbl1081.35008MR2056434
  5. [5] Bandle C., Flucher M., Harmonic radius and concentration of energy, hyperbolic radius and Liouville’s equations, Δ u = e u and Δ u = u n + 2 n - 2 , SIAM Rev.38 (2) (1996) 191-238. Zbl0857.35034MR1391227
  6. [6] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal.11 (2) (1998) 283-293. Zbl0926.35125
  7. [7] Cardaliguet P., Rabah T., On the strict concavity of the harmonic radius in dimension N 3 , J. Math. Pures Appl.81 (3) (2002) 223-240. Zbl1027.31003MR1894062
  8. [8] Chen X., Del Pino M., Kowalczyk M., The Gierer & Meinhardt system: the breaking of homopclinics and multi-bump ground states, Commun. Contemp. Math.3 (3) (2001) 419-439. Zbl1003.34025MR1849649
  9. [9] Chen C.C., Lin C.S., Uniqueness of the ground state solution of Δ u + f u = 0 in R N , N 3 , Comm. Partial Differential Equations16 (8–9) (1991) 1549-1572. Zbl0753.35034
  10. [10] Coclite G.M., Georgiev V., Solitary waves for Maxwell–Schrödinger equations, Electronic J. Differential Equations2004 (94) (2004) 1-31. Zbl1064.35180
  11. [11] Dancer E.N., A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc.61 (2000) 305-312. Zbl0945.35031MR1748710
  12. [12] Dancer E.N., Wei J., On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A127 (4) (1997) 691-701. Zbl0882.35052MR1465415
  13. [13] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.189 (2) (1999) 241-262. Zbl0933.35070MR1696122
  14. [14] D'Aprile T., Mugnai D., Existence of solitary waves for the nonlinear Klein–Gordon Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A134 (5) (2004) 893-906. Zbl1064.35182
  15. [15] D'Aprile T., Wei J., On bound states concentrating on spheres for the Maxwell–Schrödinger equation, SIAM J. Math. Anal.37 (1) (2005) 321-342. Zbl1096.35017
  16. [16] D'Aprile T., Wei J., Standing waves in the Maxwell–Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations25 (1) (2006) 105-137. Zbl1207.35129
  17. [17] Del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations4 (2) (1996) 121-137. Zbl0844.35032MR1379196
  18. [18] Del Pino M., Felmer P., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (2) (1998) 127-149. Zbl0901.35023MR1614646
  19. [19] Del Pino M., Felmer P., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal.149 (1) (1997) 245-265. Zbl0887.35058MR1471107
  20. [20] Del Pino M., Felmer P., Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann.324 (1) (2002) 1-32. Zbl1030.35031MR1931757
  21. [21] Del Pino M., Kowalczyk M., Wei J., Multi-bump ground states for the Gierer–Meinhardt system in R 2 , Ann. Inst. H. Poincaré Anal. Non Linéaire20 (1) (2003) 53-85. Zbl1114.35065
  22. [22] Evans L.C., Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
  23. [23] Floer A., Weinstein A., Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (3) (1986) 397-408. Zbl0613.35076MR867665
  24. [24] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R N , Adv. Math. Suppl. Stud.7A (1981) 369-402. Zbl0469.35052MR634248
  25. [25] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2001. Zbl0361.35003MR1814364
  26. [26] Grossi M., Some results on a class of nonlinear Schrödinger equations, Math. Z.235 (4) (2000) 687-705. Zbl0970.35039MR1801580
  27. [27] Gui C., Multipeak solutions for a semilinear Neumann problem, Duke Math. J.84 (3) (1996) 739-769. Zbl0866.35039MR1408543
  28. [28] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (3) (2000) 522-538. Zbl0949.35052MR1758231
  29. [29] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (1) (2000) 47-82. Zbl0944.35020MR1743431
  30. [30] Hardin D.P., Saff E.B., Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc.51 (10) (2004) 1186-1194. Zbl1095.49031MR2104914
  31. [31] Helms L.L., Introduction to Potential Theory, John Wiley & Sons Inc., New York, 1969. Zbl0188.17203MR261018
  32. [32] Jeanjean L., Tanaka K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations21 (3) (2004) 287-318. Zbl1060.35012MR2094325
  33. [33] Kang X., Wei J., On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations5 (7–9) (2000) 899-928. Zbl1217.35065
  34. [34] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R N , Arch. Rational Mech. Anal.105 (3) (1989) 243-266. Zbl0676.35032MR969899
  35. [35] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Differential Equations6 (2) (1997) 955-980. Zbl1023.35500MR1606351
  36. [36] Ni W.M., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.44 (7) (1991) 819-851. Zbl0754.35042MR1115095
  37. [37] Oh Y.J., Existence of semi-classical bound states of nonlinear Schrödinger equation with potential on the class V a , Comm. Partial Differential Equations13 (12) (1988) 1499-1519. Zbl0702.35228MR970154
  38. [38] Pistoia A., Multi-peak solutions for a class of nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl.9 (1) (2002) 69-91. Zbl1001.35030MR1891696
  39. [39] Rabinowitz P., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (2) (1992) 270-291. Zbl0763.35087MR1162728
  40. [40] Ruiz D., Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci.15 (1) (2005) 141-164. Zbl1074.81023
  41. [41] Wang X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys.153 (2) (1993) 229-244. Zbl0795.35118MR1218300
  42. [42] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (2) (1996) 315-333. Zbl0865.35011MR1404386
  43. [43] J. Wei, M. Winter, Symmetric and asymmetric multiple clusters in a reaction-diffusion system, NoDEA Nonlinear Differential Equations Appl., in press. Zbl1137.34318MR2374210
  44. [44] Wei J., Winter M., Clustered spots in the FitzHugh–Nagumo system, J. Differential Equations213 (1) (2005) 121-145. Zbl1330.35022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.