Linear instability implies nonlinear instability for various types of viscous boundary layers

B. Desjardins; E. Grenier

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 87-106
  • ISSN: 0294-1449

How to cite

top

Desjardins, B., and Grenier, E.. "Linear instability implies nonlinear instability for various types of viscous boundary layers." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 87-106. <http://eudml.org/doc/78575>.

@article{Desjardins2003,
author = {Desjardins, B., Grenier, E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {87-106},
publisher = {Elsevier},
title = {Linear instability implies nonlinear instability for various types of viscous boundary layers},
url = {http://eudml.org/doc/78575},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Desjardins, B.
AU - Grenier, E.
TI - Linear instability implies nonlinear instability for various types of viscous boundary layers
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 87
EP - 106
LA - eng
UR - http://eudml.org/doc/78575
ER -

References

top
  1. [1] Desjardins B., Grenier E., Reynolds.m a package to compute critical Reynolds numbers, 1998 , http://www.dmi.ens.fr/equipes/edp/Reynolds/reynolds.html. 
  2. [2] Dormy E., Desjardins B., Grenier E., Stability of mixed Ekman–Hartmann boundary layers, Nonlinearity12 (2) (1999) 181-199. Zbl0939.35151MR1677778
  3. [3] Dormy E., Desjardins B., Grenier E., Instability of Ekman–Hartmann boundary layers, with application to the fluid flow near the core-mantle boundary, Physics of the Earth and Planetary Interiors123 (2001) 15-26. 
  4. [4] Friedlander S., Strauss W., Vishik M., Nonlinear instability in an ideal fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997) 187-209. Zbl0874.76026MR1441392
  5. [5] Gisclon M., Serre D., Study of boundary conditions for a strictly hyperbolic system via parabolic approximation, C. R. Acad. Sci. Paris Ser. I Math.319 (4) (1994) 377-382. Zbl0808.35075MR1289315
  6. [6] Greenspan H.P., The Theory of Rotating Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, 1969. Zbl0182.28103
  7. [7] Grenier E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math.53 (2000) 1067-1091. Zbl1048.35081MR1761409
  8. [8] Grenier E., Guès O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations143 (1) (1998) 110-146. Zbl0896.35078MR1604888
  9. [9] Grenier E., Masmoudi N., Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations22 (1997) 953-975. Zbl0880.35093MR1452174
  10. [10] Guo Y., Strauss W., Instability of periodic BGK equilibria, Comm. Pure Appl. Math.48 (1995) 861-894. Zbl0840.45012MR1361017
  11. [11] Guo Y., Strauss W., Nonlinear instability of double-humped equilibria, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 339-352. Zbl0836.35130MR1340268
  12. [12] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, Berlin, 1981. Zbl0456.35001MR610244
  13. [13] Iooss G., Nielsen H.B., True H., Bifurcation of the stationary Ekman flow into a stable periodic flow, Arch. Rational Mech. Anal.68 (3) (1978) 227-256. Zbl0395.76045MR509226
  14. [14] Lilly D.K., On the instability of the Ekman boundary layer, J. Atmos. Sci.23 (1966) 481-494. 
  15. [15] Majda A., Compressible Fluid Flows Systems of Conservation Laws in Several Variables, Appl. Math. Sci., 53, Springer, Berlin, 1984. Zbl0537.76001MR748308
  16. [16] Serre D., L1 -stability of travelling waves in scalar conservation laws, Exp. No. VIII, 13 pp., Semin. Equ. Dériv. Partielles, Ecole Polytech., Palaiseau, 1999. Zbl1063.35520MR1721326
  17. [17] Serre D., Systèmes de lois de conservations, I et II, Diderot Editeur, Paris, 1996. MR1459988
  18. [18] Shizuta Y., On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math.36 (1983) 705-754. Zbl0515.35002MR720591
  19. [19] Vidav I., Spectra of perturbed semigroups with applications to transport theory, J. Math. Anal. Appl.30 (1970) 264-279. Zbl0195.13704MR259662
  20. [20] Yudovitch V.I., Non-stationary flow of a perfect non-viscous fluid, Zh. Vych. Math.3 (1963) 1032-1066. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.