Stability of oscillating boundary layers in rotating fluids

Nader Masmoudi; Frédéric Rousset

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 6, page 955-1002
  • ISSN: 0012-9593

Abstract

top
We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to ε . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.

How to cite

top

Masmoudi, Nader, and Rousset, Frédéric. "Stability of oscillating boundary layers in rotating fluids." Annales scientifiques de l'École Normale Supérieure 41.6 (2008): 955-1002. <http://eudml.org/doc/272108>.

@article{Masmoudi2008,
abstract = {We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to $\varepsilon $. This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.},
author = {Masmoudi, Nader, Rousset, Frédéric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {incompressible Navier-Stokes equation; oscillatory perturbations; vanishing viscosity},
language = {eng},
number = {6},
pages = {955-1002},
publisher = {Société mathématique de France},
title = {Stability of oscillating boundary layers in rotating fluids},
url = {http://eudml.org/doc/272108},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Masmoudi, Nader
AU - Rousset, Frédéric
TI - Stability of oscillating boundary layers in rotating fluids
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 6
SP - 955
EP - 1002
AB - We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to $\varepsilon $. This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.
LA - eng
KW - incompressible Navier-Stokes equation; oscillatory perturbations; vanishing viscosity
UR - http://eudml.org/doc/272108
ER -

References

top
  1. [1] A. Babin, A. Mahalov & B. Nicolaenko, Global splitting, integrability and regularity of 3 D Euler and Navier-Stokes equations for uniformly rotating fluids, European J. Mech. B Fluids15 (1996), 291–300. Zbl0882.76096MR1400515
  2. [2] A. Babin, A. Mahalov & B. Nicolaenko, Regularity and integrability of 3 D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal.15 (1997), 103–150. Zbl0890.35109MR1480996
  3. [3] A. J. Bourgeois & J. T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal.25 (1994), 1023–1068. Zbl0811.35097MR1278890
  4. [4] J.-Y. Chemin, B. Desjardins, I. Gallagher & E. Grenier, Mathematical geophysics, Oxford Lecture Series in Math. and its Appl. 32, The Clarendon Press Oxford University Press, 2006. Zbl1205.86001MR2228849
  5. [5] T. Colin & P. Fabrie, Équations de Navier-Stokes 3 -D avec force de Coriolis et viscosité verticale évanescente, C. R. Acad. Sci. Paris Sér. I Math.324 (1997), 275–280. Zbl0882.76098MR1438399
  6. [6] B. Desjardins, E. Dormy & E. Grenier, Stability of mixed Ekman-Hartmann boundary layers, Nonlinearity12 (1999), 181–199. Zbl0939.35151MR1677778
  7. [7] B. Desjardins & E. Grenier, Linear instability implies nonlinear instability for various types of viscous boundary layers, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003), 87–106. Zbl1114.76024MR1958163
  8. [8] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Series 268, Cambridge Univ. Press, 1999. Zbl0926.35002MR1735654
  9. [9] P. F. Embid & A. J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Differential Equations21 (1996), 619–658. Zbl0849.35106MR1387463
  10. [10] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall Inc., 1964. Zbl0144.34903MR181836
  11. [11] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy 38, Springer, 1994. Zbl0949.35004MR1284205
  12. [12] I. Gallagher, Applications of Schochet’s methods to parabolic equations, J. Math. Pures Appl.77 (1998), 989–1054. Zbl1101.35330MR1661025
  13. [13] F. Gallaire & F. Rousset, Spectral stability implies nonlinear stability for incompressible boundary layers, Indiana Univ. Math. J.57 (2008), 1959–1975. Zbl1158.35073MR2440888
  14. [14] H. Greenspan, The theory of rotating fluids, Cambridge Monographs on Mechanics and Applied Mathematics, 1969. Zbl0443.76090
  15. [15] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl.76 (1997), 477–498. Zbl0885.35090MR1465607
  16. [16] E. Grenier, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math.53 (2000), 1067–1091. Zbl1048.35081MR1761409
  17. [17] E. Grenier & N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations22 (1997), 953–975. Zbl0880.35093MR1452174
  18. [18] E. Grenier & F. Rousset, Stability of one-dimensional boundary layers by using Green’s functions, Comm. Pure Appl. Math.54 (2001), 1343–1385. Zbl1026.35015MR1846801
  19. [19] O. Guès, Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann. Inst. Fourier (Grenoble) 45 (1995), 973–1006. Zbl0831.34023MR1359836
  20. [20] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer, 1981. Zbl0456.35001MR610244
  21. [21] D. Lilly, On the instability of Ekman boundary flow, J. Atmos. Sci. (1966), 481–494. 
  22. [22] N. Masmoudi, The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary, Arch. Rational Mech. Anal.142 (1998), 375–394. Zbl0915.76017MR1645962
  23. [23] N. Masmoudi, Ekman layers of rotating fluids: the case of general initial data, Comm. Pure Appl. Math.53 (2000), 432–483. Zbl1047.76124MR1733696
  24. [24] G. Métivier & K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc. 175, 2005. Zbl1074.35066MR2130346
  25. [25] J. Pedlosky, Geophysical fluid dynamics, Springer, 1979. Zbl0713.76005
  26. [26] F. Rousset, Stability of large Ekman boundary layers in rotating fluids, Arch. Ration. Mech. Anal.172 (2004), 213–245. Zbl1117.76026MR2058164
  27. [27] F. Rousset, Characteristic boundary layers in real vanishing viscosity limits, J. Differential Equations210 (2005), 25–64. Zbl1060.35015MR2114123
  28. [28] F. Rousset, Stability of large amplitude Ekman-Hartmann boundary layers in MHD: the case of ill-prepared data, Comm. Math. Phys.259 (2005), 223–256. Zbl1075.76033MR2169974
  29. [29] M. Sammartino & R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998), 463–491. Zbl0913.35103MR1617538
  30. [30] S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations114 (1994), 476–512. Zbl0838.35071MR1303036
  31. [31] M. E. Taylor, Pseudodifferential operators, Princeton Mathematical Series 34, Princeton University Press, 1981. Zbl0453.47026MR618463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.