Non-compact lamination convex hulls
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 3, page 391-403
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKolář, Jan. "Non-compact lamination convex hulls." Annales de l'I.H.P. Analyse non linéaire 20.3 (2003): 391-403. <http://eudml.org/doc/78584>.
@article{Kolář2003,
author = {Kolář, Jan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {lamination convexity; separate convexity; bi-convexity; upper semicontinuity; convex hull},
language = {eng},
number = {3},
pages = {391-403},
publisher = {Elsevier},
title = {Non-compact lamination convex hulls},
url = {http://eudml.org/doc/78584},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Kolář, Jan
TI - Non-compact lamination convex hulls
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 3
SP - 391
EP - 403
LA - eng
KW - lamination convexity; separate convexity; bi-convexity; upper semicontinuity; convex hull
UR - http://eudml.org/doc/78584
ER -
References
top- [1] Aumann R.J., Hart S., Bi-convexity and bi-martingales, Israel J. Math.54 (1986) 159-180. Zbl0607.52001MR852476
- [2] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, Universität Leipzig, 2001. Zbl1140.74303
- [3] B. Kirchheim, Private communication.
- [4] Müller S., Šverák V., Attainment results for the two-well problem by convex integration, in: Jost J. (Ed.), Geometric Analysis and the Calculus of Variations, International Press, Cambridge, MA, 1996, pp. 239-251. Zbl0930.35038MR1449410
- [5] Šverák V., New examples of quasiconvex functions, Arch. Rat. Mech. Anal.119 (1992) 293-300. Zbl0823.26009MR1179688
- [6] K. Zhang, On the stability of quasiconvex hulls, Preprint Max-Plank Inst. for Mathematics in the Sciences, Leipzig, 33/1998. Zbl0917.49014
Citations in EuDML Documents
top- Gisella Croce, A differential inclusion : the case of an isotropic set
- Gisella Croce, A differential inclusion: the case of an isotropic set
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.