Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force

Olivier Glass

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 6, page 921-946
  • ISSN: 0294-1449

How to cite

top

Glass, Olivier. "Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 921-946. <http://eudml.org/doc/78605>.

@article{Glass2003,
author = {Glass, Olivier},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {921-946},
publisher = {Elsevier},
title = {Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force},
url = {http://eudml.org/doc/78605},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Glass, Olivier
TI - Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 921
EP - 946
LA - eng
UR - http://eudml.org/doc/78605
ER -

References

top
  1. [1] Alber H.D, Existence of three-dimensional, steady, inviscid, incompressible flows with non-vanishing vorticity, Math. Ann.292 (3) (1992) 493-528. Zbl0772.35049MR1152947
  2. [2] Brockett R.W, Asymptotic stability and feedback stabilization, in: Differential Geometric Control Theory, Houghton, MI, 1982, Progr. Math., 27, Birkhäuser Boston, 1983, pp. 181-191. Zbl0528.93051MR708502
  3. [3] Coron J.-M, Sur la stabilisation des fluides parfaits incompressibles bidimensionnels, in: Séminaire Équations aux Dérivées Partielles, École Polytechnique, Centre de Mathématiques, 1998, exposé VII. Zbl1086.93511MR1721325
  4. [4] Coron J.-M, On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain, SIAM J. Control Optim.37 (6) (1999) 1874-1896. Zbl0954.76010MR1720143
  5. [5] Glass O, An addendum to a J.M. Coron theorem concerning the controllability of the Euler system for 2D incompressible inviscid fluids, J. Math. Pures Appl.80 (8) (2001) 845-877. Zbl1134.93314MR1860818
  6. [6] Glass O, Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var.5 (2000) 1-44. Zbl0940.93012MR1745685
  7. [7] Troshkin O.V, A two-dimensional flow problem for the steady Euler equations, Mat. Sb.180 (3) (1989) 354-374, Translation in , Math. USSR-Sb.66 (2) (1990) 363-382. Zbl0850.76110MR993230
  8. [8] Yudovich V.I, A two-dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain, Mat. Sb.64 (106) (1964) 562-588, Translation in: Amer. Math. Soc. Transl. Ser. 2 (57) 277–304. MR177577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.