Sur la stabilisation des fluides parfaits incompressibles bidimensionnels

Jean-Michel Coron[1]

  • [1] Département de Mathématiques, Université de Paris Sud, 91405 Orsay Cedex, France

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-15

How to cite

top

Coron, Jean-Michel. "Sur la stabilisation des fluides parfaits incompressibles bidimensionnels." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-15. <http://eudml.org/doc/10981>.

@article{Coron1998-1999,
affiliation = {Département de Mathématiques, Université de Paris Sud, 91405 Orsay Cedex, France},
author = {Coron, Jean-Michel},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur la stabilisation des fluides parfaits incompressibles bidimensionnels},
url = {http://eudml.org/doc/10981},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Coron, Jean-Michel
TI - Sur la stabilisation des fluides parfaits incompressibles bidimensionnels
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 15
LA - fre
UR - http://eudml.org/doc/10981
ER -

References

top
  1. R.W. Brockett, Asymptotic stability and feedback stabilization, dans : Differential Geometric Control Theory, R.W. Brockett, R.S. Millman et H.J. Sussmann éds, Progress in Math., 27 (1983) p. 181-191, Birkhäuser, Basel-Boston. Zbl0528.93051MR708502
  2. W.L. Chow, Uber systeme von linearen partiellen differentialgleichung ester ordnung, Math. Ann. 117 (1940-41) p. 227-232. 
  3. F.H. Clarke, Yu. S. Ledyaev, R.J. Stern, Asymptotic stability and smooth Lyapunov functions, J. Diffferential Equations, 149 (1998) p. 69-114. Zbl0907.34013MR1643670
  4. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems, 5 (1992) p. 295-312. Zbl0760.93067MR1164379
  5. J.-M. Coron, Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws, SIAM J. Control and Optimization, 33 (1995) p. 804-833. Zbl0828.93054MR1327239
  6. J-M. Coron, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels,C. R. Acad. Sci. Paris, t. 317, Série I, (1993) p. 271-276. Zbl0781.76013
  7. J-M. Coron, Return method : Application to controllability, Séminaire Équations aux Dérivées Partielles, 1992-1993, École polytechnique, Centre de Mathématiques, exposé 14. Zbl0872.93041MR1240555
  8. J-M. Coron, On the controllability of the 2-D incompressible perfect fluids, J. Math. Pures et Appliquées, 75 (1996) p. 155-188. Zbl0848.76013MR1380673
  9. J-M. Coron, On the null asymptotic stabilization of the 2-D incompressible Euler equation in a simply connected domain, prépublication, Université Paris-Sud, 59 (1998), accepté pour publication dans SIAM J. Control and Optimization. Zbl0954.76010
  10. O. Glass, Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles en dimension 3, C.R. Acad. Sci. Paris, t. 325, Série I, (1997) p. 987-992. Zbl0897.76014
  11. O. Glass, Contrôlabilité de l’équation d’Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations aux Dérivées Partielles, 1997-1998, École polytechnique, Centre de Mathématiques, exposé 15. Zbl1175.93030
  12. O. Glass, Exact boundary controllability of 3-D Euler equation, prépublication, Décembre 1998. Zbl0940.93012
  13. V. Komornik, Rapid boundary stabilization of linear distributed systems, SIAM J. Control Optim., 35 (1997) p. 1591-1613. Zbl0889.35013MR1466918
  14. M.A. Krasnosel’ski ı ˘ , The operator translation along the trajectories of differential equations, Trans. Math. Monographs, 19 (1968). 
  15. M.A. Krasnosel’ski ı ˘ et P.P. Zabreiko, Geometric methods in nonlinear analysis, Springer-Verlag, Berlin, 1983. 
  16. J. Kurzweil, On the inversion of Lyapunov’s second theorem on stability of motion, Ann. Math. Soc. Trans. Ser.2, 24 (1956) p. 19-77. Zbl0127.30703
  17. I. Lasiecka and R. Triggiani, Differential and Algebraic Ricatti Equations with Applications to Boundary/Point Control Problems : Continuous and Approximation Theory, Lecture Notes in Control and Information Sciences, vol. 164, Springer-Verlag, Berlin, Heidelberg, New York, 1991. Zbl0754.93038
  18. J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev., 30 (1988) p. 1-68. Zbl0644.49028MR931277
  19. J.-L. Lions, Are there connections between turbulence and controllability ?, 9th INRIA International Conference, Antibes, June 12-15, 1990. 
  20. A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math., 39, special issue, (1986) p. 187-220. Zbl0595.76021MR861488
  21. P.K. Rashevski, About connecting two points of complete nonholonomic space by admissible curve, Uch Zapiski ped. inst. Libknexta, 2 (1938) p. 83-94. 
  22. C. Samson, Velocity and torque feedback control of a nonholonomic cart, dans : Advanced Robot Control, Proceedings de «  International workshop on nonlinear and adaptative control : Issues in robotics  », Grenoble, France, novembre 21-23, 1990, éd. : C. Canudas de Wit, Lecture Notes in Control and Information Sciences, vol. 162, p. 125-151, Springer-Verlag, Berlin Heidelberg New York, 1991. Zbl0800.93910MR1180972
  23. M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974) p. 500-508. Zbl0254.93006MR353107
  24. E.D. Sontag et H. Sussmann, Remarks on continuous feedbacks, IEEE CDC, Albuquerque, 2 (1980) p. 916-921. 
  25. H.J. Sussmann, Subanalytic sets and feedback control, J. Differential Equations, 31 (1979) p. 31-52. Zbl0407.93010MR524816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.