Permanence under strong aggressions is possible
Santiago Cano-Casanova; Julián López-Gómez
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 6, page 999-1041
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCano-Casanova, Santiago, and López-Gómez, Julián. "Permanence under strong aggressions is possible." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 999-1041. <http://eudml.org/doc/78608>.
@article{Cano2003,
author = {Cano-Casanova, Santiago, López-Gómez, Julián},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {999-1041},
publisher = {Elsevier},
title = {Permanence under strong aggressions is possible},
url = {http://eudml.org/doc/78608},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Cano-Casanova, Santiago
AU - López-Gómez, Julián
TI - Permanence under strong aggressions is possible
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 999
EP - 1041
LA - eng
UR - http://eudml.org/doc/78608
ER -
References
top- [1] Amann H, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math.45 (1983) 225-254. Zbl0535.35017MR719122
- [2] Amann H, Linear and Quasilinear Parabolic Problems, Monographs Math., 89, Birkhäuser, Basel, 1995. Zbl0819.35001MR1345385
- [3] Amann H, López-Gómez J, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations146 (1998) 336-374. Zbl0909.35044MR1631287
- [4] Begon M, Harper J.L, Townsend C.R, Ecology, Individual, Populations and Communities, Blackwell Scientific Publications, Cambridge, MA, 1990.
- [5] Cano-Casanova S, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems, Nonlinear Anal.49 (2002) 361-430. Zbl1142.35509MR1886119
- [6] Cano-Casanova S, López-Gómez J, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations178 (2002) 123-211. Zbl1086.35073MR1878528
- [7] S. Cano-Casanova, J. López-Gómez, Varying domains in a general class of sublinear elliptic problems, submited. Zbl1109.35352
- [8] Cantrell R.S, Cosner C, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol.37 (1998) 103-145. Zbl0948.92021MR1649516
- [9] Cantrell R.S, Cosner C, Hutson V, Permanence in some diffusive Lotka–Volterra models for three interacting species, Dynamic Systems Appl.2 (1993) 505-530. Zbl0795.92030MR1249389
- [10] Dancer E.N, On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc.326 (1991) 829-859. Zbl0769.35016MR1028757
- [11] Dancer E.N, Positivity of maps and applications, in: Matzeu M, Vignoli A (Eds.), Topological Nonlinear Analysis, Degree, Singularities and Variations, Progr. Nonlinear Differential Equations Appl., 15, Birkhäuser, Basel, 1995, pp. 303-340. Zbl0845.47043MR1322326
- [12] Hess P, Periodic-Parabolic Boundary Value Problems and Positivity, Longman, Harlow, 1991. Zbl0731.35050MR1100011
- [13] Hess P, Lazer A.C, On an abstract competition model and applications, Nonlinear Anal.16 (1991) 917-940. Zbl0743.35033MR1106994
- [14] Hirsch M, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math.383 (1988) 1-58. Zbl0624.58017MR921986
- [15] Hsu S.B, Smith H.L, Waltman P, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc.348 (1996) 4083-4094. Zbl0860.47033MR1373638
- [16] López-Gómez J, Permanence under strong competition, World Sci. Ser. Appl. Anal., 4, Word Sci. Publishing, River Edge, NJ, 1995, 473–488. Zbl0854.35055MR1372977
- [17] López-Gómez J, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations127 (1996) 263-294. Zbl0853.35078MR1387266
- [18] López-Gómez J, Molina-Meyer M, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Differential Integral Equations7 (1994) 383-398. Zbl0827.35019MR1255895
- [19] López-Gómez J, Sabina J.C, Coexistence states and global attractivity for some convective diffusive competition models, Trans. Amer. Math. Soc.347 (1995) 3797-3833. Zbl0848.35012MR1311910
- [20] Murray J.D, Mathematical Biology, Biomathematics Texts, 19, Springer, Berlin, 1989. Zbl0682.92001MR1007836
- [21] Neças J, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. MR227584
- [22] Okubo A, Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin, 1980. Zbl0422.92025MR572962
- [23] Schaefer H.H, Topological Vector Spaces, Springer, New York, 1971. Zbl0217.16002MR342978
- [24] Smith H.L, Thieme H.R, Stable coexistence and bio-stability for competitive systems of ordered banach spaces, J. Differential Equations176 (2001) 195-222. Zbl1064.47075MR1861187
- [25] Stein E.M, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
- [26] Takác P, Discrete monotone dynamics and time periodic competition between two species, Differential Integral Equations10 (1997) 547-576. Zbl0890.35012MR1744861
- [27] Wilson E.O, Sociobiology, Harvard University Press, Cambridge, MA, 1980.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.