Permanence under strong aggressions is possible

Santiago Cano-Casanova; Julián López-Gómez

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 6, page 999-1041
  • ISSN: 0294-1449

How to cite

top

Cano-Casanova, Santiago, and López-Gómez, Julián. "Permanence under strong aggressions is possible." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 999-1041. <http://eudml.org/doc/78608>.

@article{Cano2003,
author = {Cano-Casanova, Santiago, López-Gómez, Julián},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {999-1041},
publisher = {Elsevier},
title = {Permanence under strong aggressions is possible},
url = {http://eudml.org/doc/78608},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Cano-Casanova, Santiago
AU - López-Gómez, Julián
TI - Permanence under strong aggressions is possible
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 999
EP - 1041
LA - eng
UR - http://eudml.org/doc/78608
ER -

References

top
  1. [1] Amann H, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math.45 (1983) 225-254. Zbl0535.35017MR719122
  2. [2] Amann H, Linear and Quasilinear Parabolic Problems, Monographs Math., 89, Birkhäuser, Basel, 1995. Zbl0819.35001MR1345385
  3. [3] Amann H, López-Gómez J, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations146 (1998) 336-374. Zbl0909.35044MR1631287
  4. [4] Begon M, Harper J.L, Townsend C.R, Ecology, Individual, Populations and Communities, Blackwell Scientific Publications, Cambridge, MA, 1990. 
  5. [5] Cano-Casanova S, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems, Nonlinear Anal.49 (2002) 361-430. Zbl1142.35509MR1886119
  6. [6] Cano-Casanova S, López-Gómez J, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations178 (2002) 123-211. Zbl1086.35073MR1878528
  7. [7] S. Cano-Casanova, J. López-Gómez, Varying domains in a general class of sublinear elliptic problems, submited. Zbl1109.35352
  8. [8] Cantrell R.S, Cosner C, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol.37 (1998) 103-145. Zbl0948.92021MR1649516
  9. [9] Cantrell R.S, Cosner C, Hutson V, Permanence in some diffusive Lotka–Volterra models for three interacting species, Dynamic Systems Appl.2 (1993) 505-530. Zbl0795.92030MR1249389
  10. [10] Dancer E.N, On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc.326 (1991) 829-859. Zbl0769.35016MR1028757
  11. [11] Dancer E.N, Positivity of maps and applications, in: Matzeu M, Vignoli A (Eds.), Topological Nonlinear Analysis, Degree, Singularities and Variations, Progr. Nonlinear Differential Equations Appl., 15, Birkhäuser, Basel, 1995, pp. 303-340. Zbl0845.47043MR1322326
  12. [12] Hess P, Periodic-Parabolic Boundary Value Problems and Positivity, Longman, Harlow, 1991. Zbl0731.35050MR1100011
  13. [13] Hess P, Lazer A.C, On an abstract competition model and applications, Nonlinear Anal.16 (1991) 917-940. Zbl0743.35033MR1106994
  14. [14] Hirsch M, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math.383 (1988) 1-58. Zbl0624.58017MR921986
  15. [15] Hsu S.B, Smith H.L, Waltman P, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc.348 (1996) 4083-4094. Zbl0860.47033MR1373638
  16. [16] López-Gómez J, Permanence under strong competition, World Sci. Ser. Appl. Anal., 4, Word Sci. Publishing, River Edge, NJ, 1995, 473–488. Zbl0854.35055MR1372977
  17. [17] López-Gómez J, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations127 (1996) 263-294. Zbl0853.35078MR1387266
  18. [18] López-Gómez J, Molina-Meyer M, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Differential Integral Equations7 (1994) 383-398. Zbl0827.35019MR1255895
  19. [19] López-Gómez J, Sabina J.C, Coexistence states and global attractivity for some convective diffusive competition models, Trans. Amer. Math. Soc.347 (1995) 3797-3833. Zbl0848.35012MR1311910
  20. [20] Murray J.D, Mathematical Biology, Biomathematics Texts, 19, Springer, Berlin, 1989. Zbl0682.92001MR1007836
  21. [21] Neças J, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. MR227584
  22. [22] Okubo A, Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin, 1980. Zbl0422.92025MR572962
  23. [23] Schaefer H.H, Topological Vector Spaces, Springer, New York, 1971. Zbl0217.16002MR342978
  24. [24] Smith H.L, Thieme H.R, Stable coexistence and bio-stability for competitive systems of ordered banach spaces, J. Differential Equations176 (2001) 195-222. Zbl1064.47075MR1861187
  25. [25] Stein E.M, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
  26. [26] Takác P, Discrete monotone dynamics and time periodic competition between two species, Differential Integral Equations10 (1997) 547-576. Zbl0890.35012MR1744861
  27. [27] Wilson E.O, Sociobiology, Harvard University Press, Cambridge, MA, 1980. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.