Uniqueness of motion by mean curvature perturbed by stochastic noise
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 1, page 1-23
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSouganidis, P. E., and Yip, N. K.. "Uniqueness of motion by mean curvature perturbed by stochastic noise." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 1-23. <http://eudml.org/doc/78610>.
@article{Souganidis2004,
author = {Souganidis, P. E., Yip, N. K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mean curvature motion; stochastic PDEs; viscosity solutions; Gaussian white noise perturbed evolution equation},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Elsevier},
title = {Uniqueness of motion by mean curvature perturbed by stochastic noise},
url = {http://eudml.org/doc/78610},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Souganidis, P. E.
AU - Yip, N. K.
TI - Uniqueness of motion by mean curvature perturbed by stochastic noise
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 1
EP - 23
LA - eng
KW - mean curvature motion; stochastic PDEs; viscosity solutions; Gaussian white noise perturbed evolution equation
UR - http://eudml.org/doc/78610
ER -
References
top- [1] Ambrosio L., Geometric evolution problems, distance function and viscosity solutions, in: Ambrosio L., Dancer N. (Eds.), Calculus of Variations and Partial Differential Equations, Springer-Verlag, 1999. Zbl0956.35002MR1757696
- [2] Angenent S.B., Some recent results on mean curvature flow, in: Recent Advances in Partial Differential Equations, RAM Res. Appl. Math., vol. 30, Masson, Paris, 1994. Zbl0796.35068MR1266199
- [3] Angenent S.B., Ilmanen T., Chopp D.L., A computed example of nonuniqueness of mean curvature flow in R3, Comm. PDE20 (1995) 1937-1958. MR1361726
- [4] S.B. Angenent, T. Ilmanen, J.J.L. Velázquez, Fattening from smooth initial data in mean curvature flow, Preprint.
- [5] Barles G., Soner H.M., Souganidis P.E., Front propagation and phase field theory, SIAM J. Control Optim.31 (1993) 439-469. Zbl0785.35049MR1205984
- [6] Barles G., Souganidis P.E., A new approach to front propagation problems: theory and applications, Arch. Rational Mech. Anal.141 (1998) 237-296. Zbl0904.35034MR1617291
- [7] Bellettini G., Paolini M., Two examples of fattening for the curvature flow with a driving force, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl.5 (1994) 229-236. Zbl0826.35051MR1298266
- [8] Bertoin J., Lev́y Processes, Cambridge University Press, 1996.
- [9] Brakke K., The Motion of a Surface by its Mean Curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
- [10] Chen Y.G., Giga Y., Goto S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom.33 (1991) 749-786. Zbl0696.35087MR1100211
- [11] Dirr N., Luckhaus S., Novaga M., A stochastic selection principle in case of fattening for curvature flow, Calc. Var. Partial Differential Equations13 (2001) 405-425. Zbl1015.60070MR1867935
- [12] Evans L.C., Spruck J., Motion of level sets by mean curvature. I, J. Differential Geom.33 (1991) 635-681. Zbl0726.53029MR1100206
- [13] Evans L.C., Soner H.M., Souganidis P.E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.45 (1992) 1097-1123. Zbl0801.35045MR1177477
- [14] T. Funaki, Singular limits of reaction diffusion equations and random interfaces, Preprint. Zbl0943.60060
- [15] Goto S., Generalized motion of noncompact hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations7 (1994) 323-343. Zbl0808.35007MR1255892
- [16] Ilmanen T., Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differential Geom.38 (1993) 417-461. Zbl0784.53035MR1237490
- [17] Ishii H., Souganidis P.E., Generalized motion of noncompact hypersurfaces with velocities having arbitrary growth on the curvature tensor, Tôhuko Math. J.47 (1995) 227-250. Zbl0837.35066MR1329522
- [18] Koo Y., A fattening principle for fronts propagating by mean curvature plus a driving force, Comm. PDE24 (1999) 1035-1053. Zbl0935.35035MR1680881
- [19] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. Zbl0734.60060MR1121940
- [20] Lions P.-L., Souganidis P.E., Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math.326 (1998) 1085-1092. Zbl1002.60552MR1647162
- [21] Lions P.-L., Souganidis P.E., Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 735-741. Zbl0924.35203MR1659958
- [22] Lions P.-L., Souganidis P.E., Fully nonlinear stochastic partial differential equations with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 617-624. Zbl0966.60058MR1799099
- [23] Lions P.-L., Souganidis P.E., Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 783-790. Zbl0970.60072MR1807189
- [24] Soner H.M., Motion of set by the curvature of its boundary, J. Differential Equations101 (1993) 313-372. Zbl0769.35070MR1204331
- [25] Souganidis P.E., Front propagation: theory and applications, in: Viscosity Solutions and their Applications, Lecture Notes in Math., vol. 1660, Springer-Verlag, 1997. Zbl0882.35016MR1462703
- [26] Taylor J., II-mean curvature and weighted mean curvature, Acta Metall. Meter.40 (1992) 1475-1485.
- [27] Taylor J., Cahn J.W., Handwerker C.A., I-geometric models of crystal growth, Acta Metall. Meter.40 (1992) 1443-1474.
- [28] Yip N.K., Stochastic motion by mean curvature, Arch. Rational Mech. Anal.144 (1998) 313-355. Zbl0930.60047MR1656479
- [29] Yip N.K., Existence of dendritic crystal growth with stochastic perturbations, J. Nonlinear Sci.8 (1998) 491-579. Zbl0914.60079MR1638763
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.