Uniqueness of motion by mean curvature perturbed by stochastic noise

P. E. Souganidis; N. K. Yip

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 1, page 1-23
  • ISSN: 0294-1449

How to cite

top

Souganidis, P. E., and Yip, N. K.. "Uniqueness of motion by mean curvature perturbed by stochastic noise." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 1-23. <http://eudml.org/doc/78610>.

@article{Souganidis2004,
author = {Souganidis, P. E., Yip, N. K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {mean curvature motion; stochastic PDEs; viscosity solutions; Gaussian white noise perturbed evolution equation},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Elsevier},
title = {Uniqueness of motion by mean curvature perturbed by stochastic noise},
url = {http://eudml.org/doc/78610},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Souganidis, P. E.
AU - Yip, N. K.
TI - Uniqueness of motion by mean curvature perturbed by stochastic noise
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 1
EP - 23
LA - eng
KW - mean curvature motion; stochastic PDEs; viscosity solutions; Gaussian white noise perturbed evolution equation
UR - http://eudml.org/doc/78610
ER -

References

top
  1. [1] Ambrosio L., Geometric evolution problems, distance function and viscosity solutions, in: Ambrosio L., Dancer N. (Eds.), Calculus of Variations and Partial Differential Equations, Springer-Verlag, 1999. Zbl0956.35002MR1757696
  2. [2] Angenent S.B., Some recent results on mean curvature flow, in: Recent Advances in Partial Differential Equations, RAM Res. Appl. Math., vol. 30, Masson, Paris, 1994. Zbl0796.35068MR1266199
  3. [3] Angenent S.B., Ilmanen T., Chopp D.L., A computed example of nonuniqueness of mean curvature flow in R3, Comm. PDE20 (1995) 1937-1958. MR1361726
  4. [4] S.B. Angenent, T. Ilmanen, J.J.L. Velázquez, Fattening from smooth initial data in mean curvature flow, Preprint. 
  5. [5] Barles G., Soner H.M., Souganidis P.E., Front propagation and phase field theory, SIAM J. Control Optim.31 (1993) 439-469. Zbl0785.35049MR1205984
  6. [6] Barles G., Souganidis P.E., A new approach to front propagation problems: theory and applications, Arch. Rational Mech. Anal.141 (1998) 237-296. Zbl0904.35034MR1617291
  7. [7] Bellettini G., Paolini M., Two examples of fattening for the curvature flow with a driving force, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl.5 (1994) 229-236. Zbl0826.35051MR1298266
  8. [8] Bertoin J., Lev́y Processes, Cambridge University Press, 1996. 
  9. [9] Brakke K., The Motion of a Surface by its Mean Curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
  10. [10] Chen Y.G., Giga Y., Goto S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom.33 (1991) 749-786. Zbl0696.35087MR1100211
  11. [11] Dirr N., Luckhaus S., Novaga M., A stochastic selection principle in case of fattening for curvature flow, Calc. Var. Partial Differential Equations13 (2001) 405-425. Zbl1015.60070MR1867935
  12. [12] Evans L.C., Spruck J., Motion of level sets by mean curvature. I, J. Differential Geom.33 (1991) 635-681. Zbl0726.53029MR1100206
  13. [13] Evans L.C., Soner H.M., Souganidis P.E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.45 (1992) 1097-1123. Zbl0801.35045MR1177477
  14. [14] T. Funaki, Singular limits of reaction diffusion equations and random interfaces, Preprint. Zbl0943.60060
  15. [15] Goto S., Generalized motion of noncompact hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations7 (1994) 323-343. Zbl0808.35007MR1255892
  16. [16] Ilmanen T., Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differential Geom.38 (1993) 417-461. Zbl0784.53035MR1237490
  17. [17] Ishii H., Souganidis P.E., Generalized motion of noncompact hypersurfaces with velocities having arbitrary growth on the curvature tensor, Tôhuko Math. J.47 (1995) 227-250. Zbl0837.35066MR1329522
  18. [18] Koo Y., A fattening principle for fronts propagating by mean curvature plus a driving force, Comm. PDE24 (1999) 1035-1053. Zbl0935.35035MR1680881
  19. [19] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. Zbl0734.60060MR1121940
  20. [20] Lions P.-L., Souganidis P.E., Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math.326 (1998) 1085-1092. Zbl1002.60552MR1647162
  21. [21] Lions P.-L., Souganidis P.E., Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math.327 (1998) 735-741. Zbl0924.35203MR1659958
  22. [22] Lions P.-L., Souganidis P.E., Fully nonlinear stochastic partial differential equations with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 617-624. Zbl0966.60058MR1799099
  23. [23] Lions P.-L., Souganidis P.E., Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math.331 (2000) 783-790. Zbl0970.60072MR1807189
  24. [24] Soner H.M., Motion of set by the curvature of its boundary, J. Differential Equations101 (1993) 313-372. Zbl0769.35070MR1204331
  25. [25] Souganidis P.E., Front propagation: theory and applications, in: Viscosity Solutions and their Applications, Lecture Notes in Math., vol. 1660, Springer-Verlag, 1997. Zbl0882.35016MR1462703
  26. [26] Taylor J., II-mean curvature and weighted mean curvature, Acta Metall. Meter.40 (1992) 1475-1485. 
  27. [27] Taylor J., Cahn J.W., Handwerker C.A., I-geometric models of crystal growth, Acta Metall. Meter.40 (1992) 1443-1474. 
  28. [28] Yip N.K., Stochastic motion by mean curvature, Arch. Rational Mech. Anal.144 (1998) 313-355. Zbl0930.60047MR1656479
  29. [29] Yip N.K., Existence of dendritic crystal growth with stochastic perturbations, J. Nonlinear Sci.8 (1998) 491-579. Zbl0914.60079MR1638763

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.