Two examples of fattening for the curvature flow with a driving force
Giovanni Bellettini; Maurizio Paolini
- Volume: 5, Issue: 3, page 229-236
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBellettini, Giovanni, and Paolini, Maurizio. "Two examples of fattening for the curvature flow with a driving force." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.3 (1994): 229-236. <http://eudml.org/doc/244251>.
@article{Bellettini1994,
abstract = {We provide two examples of a regular curve evolving by curvature with a forcing term, which degenerates in a set having an interior part after a finite time.},
author = {Bellettini, Giovanni, Paolini, Maurizio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear partial differential equations of parabolic type; Mean curvature flow; Viscosity solutions; mean curvature flow; viscosity solutions; fattening},
language = {eng},
month = {9},
number = {3},
pages = {229-236},
publisher = {Accademia Nazionale dei Lincei},
title = {Two examples of fattening for the curvature flow with a driving force},
url = {http://eudml.org/doc/244251},
volume = {5},
year = {1994},
}
TY - JOUR
AU - Bellettini, Giovanni
AU - Paolini, Maurizio
TI - Two examples of fattening for the curvature flow with a driving force
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/9//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 3
SP - 229
EP - 236
AB - We provide two examples of a regular curve evolving by curvature with a forcing term, which degenerates in a set having an interior part after a finite time.
LA - eng
KW - Nonlinear partial differential equations of parabolic type; Mean curvature flow; Viscosity solutions; mean curvature flow; viscosity solutions; fattening
UR - http://eudml.org/doc/244251
ER -
References
top- ALMGREN, F. - TAYLOR, J. E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. Zbl0783.35002MR1205983DOI10.1137/0331020
- ANGENENT, S., On the formation of singularities in the curve shortening flow. J. Differential Geom., 33, 3, 1991, 601-633. Zbl0731.53002MR1100205
- BARLES, G. - SONER, H. M. - SOUGANIDIS, P. E., Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. Zbl0785.35049MR1205984DOI10.1137/0331021
- BRAKKE, K. A., The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton1978. Zbl0386.53047MR485012
- BRONSARD, L. - KOHN, R. V., Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. Zbl0735.35072MR1101239DOI10.1016/0022-0396(91)90147-2
- CHEN, Y. G. - GIGA, Y. - GOTO, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. Zbl0696.35087MR1100211
- CRANDALL, M. G. - ISHII, H. - LIONS, P. L., Users guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc.(N.S.), 27, 1992, 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
- . Trans. Amer. Math. Soc., 227, 1983, 1-42. Zbl0599.35024MR690039DOI10.2307/1999343
- DE GIORGI, E., Some conjectures on flow by mean curvature. In: M. L. BENEVENTO - T. BRUNO - C. SBORDONE (eds.), Methods of real analysis and partial differential equations. Liguori, Napoli1990. Zbl0840.35042
- DE GIORGI, E., Conjectures on limits of some quasi linear parabolic equations and flow by mean curvature. Lecture delivered at the meeting on Partial Differential Equations and Related Topics in honour of L. Niremberg, Trento, September 3-7, 1990. Zbl0802.35063
- DE GIORGI, E., Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa1991, 173-187. Zbl0840.35012
- EVANS, L. C. - SONER, H.-M. - SOUGANIDIS, P. E., Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. Zbl0801.35045MR1177477DOI10.1002/cpa.3160450903
- EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. Zbl0726.53029MR1100206
- EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. Zbl0776.53005MR1068927DOI10.2307/2154167
- EVANS, L. C. - SPRUCK, J., Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. Zbl0768.53003MR1151756DOI10.1007/BF02921385
- GIGA, Y. - GOTO, S. - ISHII, H. - SATO, M. H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. Zbl0836.35009MR1119185DOI10.1512/iumj.1991.40.40023
- GRAYSON, M., The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. Zbl0667.53001MR906392
- HUISKEN, G., Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom., 31, 1990, 285-299. Zbl0694.53005MR1030675
- ILMANEN, T., Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 1992, 671-705. Zbl0759.53035MR1189906DOI10.1512/iumj.1992.41.41036
- ILMANEN, T., Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. Zbl0784.53035MR1237490
- JENSEN, R., The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. Zbl0708.35019MR920674DOI10.1007/BF00281780
- LIONS, P.-L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. Zbl0716.49022MR709164DOI10.1080/03605308308820297
- PAOLINI, M. - VERDI, C., Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptotic Anal., 5, 1992, 553-574. Zbl0757.65078MR1169358
- SONER, H. M., Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. Zbl0769.35070MR1204331DOI10.1006/jdeq.1993.1015
- SONER, H. M., Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. Zbl0935.35060
- SONER, H.-M. - SOUGANIDIS, P. E., Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. Zbl0804.53006MR1218522DOI10.1080/03605309308820954
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.