On planar selfdual electroweak vortices

Dongho Chae; Gabriella Tarantello

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 2, page 187-207
  • ISSN: 0294-1449

How to cite

top

Chae, Dongho, and Tarantello, Gabriella. "On planar selfdual electroweak vortices." Annales de l'I.H.P. Analyse non linéaire 21.2 (2004): 187-207. <http://eudml.org/doc/78615>.

@article{Chae2004,
author = {Chae, Dongho, Tarantello, Gabriella},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {vortex-solution; elliptic systems},
language = {eng},
number = {2},
pages = {187-207},
publisher = {Elsevier},
title = {On planar selfdual electroweak vortices},
url = {http://eudml.org/doc/78615},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Chae, Dongho
AU - Tarantello, Gabriella
TI - On planar selfdual electroweak vortices
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 2
SP - 187
EP - 207
LA - eng
KW - vortex-solution; elliptic systems
UR - http://eudml.org/doc/78615
ER -

References

top
  1. [1] Abrikosov A.A., On the magnetic properties of superconductors of second group, Sov. Phys. JETP5 (1957) 1174-1182. 
  2. [2] Ambjorn J., Olesen P., A magnetic condensate solution of the classical electroweak theory, Phys. Lett. B218 (1989) 67-71. 
  3. [3] Ambjorn J., Olesen P., On electroweak magnetis, Nucl. Phys. B315 (1989) 606-614. 
  4. [4] Ambjorn J., Olesen P., A condensate solution of the electroweak theory which interpolates between the broken and symmetry phase, Nucl. Phys. B330 (1990) 193-204. 
  5. [5] Bartolucci D., Tarantello G., The Liouville equations with singular data and their applications to electroweak vortices, Comm. Math. Phys.229 (2002) 3-47. Zbl1009.58011MR1917672
  6. [6] H. Brezis, F. Merle, Uniform estimates and blow-up behaviour for solutions of −Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations 16, (8,9), 1223–1253. Zbl0746.35006
  7. [7] Chae D., Imanuvilov O.Yu., The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys.215 (2000) 119-142. Zbl1002.58015MR1800920
  8. [8] Chen W., Li C., Qualitative properties of solutions to some nonlinear elliptic equations in R2, Duke Math. J.71 (2) (1993) 427-439. Zbl0923.35055MR1233443
  9. [9] 't Hooft G., A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B153 (1979) 141-160. MR535106
  10. [10] C.H. Lai (Ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific, Singapore. MR668876
  11. [11] Nirenberg L., Topics in Nonlinear Analysis, Courant Lecture Notes in Math., American Mathematical Society, 2001. Zbl0992.47023MR1850453
  12. [12] Prajapat J., Tarantello G., On a class of elliptic problems in R2: symmetry and uniqueness results, Proc. Royal Soc. Edinburgh131 (4) (2001) 967-985. Zbl1009.35018MR1855007
  13. [13] Spruck J., Yang Y., On multivortices in the electroweak theory I: existence of periodic solutions, Comm. Math. Phys.144 (1992) 1-16. Zbl0748.53059MR1151243
  14. [14] Spruck J., Yang Y., On multivortices in the electroweak theory II: existence of Bogomol'nyi solutions in R2, Comm. Math. Phys.144 (1992) 215-234. Zbl0748.53060MR1152370
  15. [15] Taubes C.H., Arbitrary N-vortex solutions to the first order Ginzburg–Landau equation, Comm. Math. Phys.72 (1980) 277-292. Zbl0451.35101MR573986
  16. [16] Taubes C.H., On the equivalence of first order and second order equations for gauge theories, Comm. Math. Phys.75 (1980) 207-227. Zbl0448.58029MR581946
  17. [17] Yang Y., Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Math., Springer-Verlag, New York, 2001. Zbl0982.35003MR1838682

NotesEmbed ?

top

You must be logged in to post comments.