On planar selfdual electroweak vortices

Dongho Chae; Gabriella Tarantello

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 2, page 187-207
  • ISSN: 0294-1449

How to cite

top

Chae, Dongho, and Tarantello, Gabriella. "On planar selfdual electroweak vortices." Annales de l'I.H.P. Analyse non linéaire 21.2 (2004): 187-207. <http://eudml.org/doc/78615>.

@article{Chae2004,
author = {Chae, Dongho, Tarantello, Gabriella},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {vortex-solution; elliptic systems},
language = {eng},
number = {2},
pages = {187-207},
publisher = {Elsevier},
title = {On planar selfdual electroweak vortices},
url = {http://eudml.org/doc/78615},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Chae, Dongho
AU - Tarantello, Gabriella
TI - On planar selfdual electroweak vortices
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 2
SP - 187
EP - 207
LA - eng
KW - vortex-solution; elliptic systems
UR - http://eudml.org/doc/78615
ER -

References

top
  1. [1] Abrikosov A.A., On the magnetic properties of superconductors of second group, Sov. Phys. JETP5 (1957) 1174-1182. 
  2. [2] Ambjorn J., Olesen P., A magnetic condensate solution of the classical electroweak theory, Phys. Lett. B218 (1989) 67-71. 
  3. [3] Ambjorn J., Olesen P., On electroweak magnetis, Nucl. Phys. B315 (1989) 606-614. 
  4. [4] Ambjorn J., Olesen P., A condensate solution of the electroweak theory which interpolates between the broken and symmetry phase, Nucl. Phys. B330 (1990) 193-204. 
  5. [5] Bartolucci D., Tarantello G., The Liouville equations with singular data and their applications to electroweak vortices, Comm. Math. Phys.229 (2002) 3-47. Zbl1009.58011MR1917672
  6. [6] H. Brezis, F. Merle, Uniform estimates and blow-up behaviour for solutions of −Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations 16, (8,9), 1223–1253. Zbl0746.35006
  7. [7] Chae D., Imanuvilov O.Yu., The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory, Comm. Math. Phys.215 (2000) 119-142. Zbl1002.58015MR1800920
  8. [8] Chen W., Li C., Qualitative properties of solutions to some nonlinear elliptic equations in R2, Duke Math. J.71 (2) (1993) 427-439. Zbl0923.35055MR1233443
  9. [9] 't Hooft G., A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B153 (1979) 141-160. MR535106
  10. [10] C.H. Lai (Ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific, Singapore. MR668876
  11. [11] Nirenberg L., Topics in Nonlinear Analysis, Courant Lecture Notes in Math., American Mathematical Society, 2001. Zbl0992.47023MR1850453
  12. [12] Prajapat J., Tarantello G., On a class of elliptic problems in R2: symmetry and uniqueness results, Proc. Royal Soc. Edinburgh131 (4) (2001) 967-985. Zbl1009.35018MR1855007
  13. [13] Spruck J., Yang Y., On multivortices in the electroweak theory I: existence of periodic solutions, Comm. Math. Phys.144 (1992) 1-16. Zbl0748.53059MR1151243
  14. [14] Spruck J., Yang Y., On multivortices in the electroweak theory II: existence of Bogomol'nyi solutions in R2, Comm. Math. Phys.144 (1992) 215-234. Zbl0748.53060MR1152370
  15. [15] Taubes C.H., Arbitrary N-vortex solutions to the first order Ginzburg–Landau equation, Comm. Math. Phys.72 (1980) 277-292. Zbl0451.35101MR573986
  16. [16] Taubes C.H., On the equivalence of first order and second order equations for gauge theories, Comm. Math. Phys.75 (1980) 207-227. Zbl0448.58029MR581946
  17. [17] Yang Y., Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Math., Springer-Verlag, New York, 2001. Zbl0982.35003MR1838682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.