Stability of radially symmetric travelling waves in reaction–diffusion equations

Violaine Roussier

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 3, page 341-379
  • ISSN: 0294-1449

How to cite

top

Roussier, Violaine. "Stability of radially symmetric travelling waves in reaction–diffusion equations." Annales de l'I.H.P. Analyse non linéaire 21.3 (2004): 341-379. <http://eudml.org/doc/78622>.

@article{Roussier2004,
author = {Roussier, Violaine},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {spherically symmetric perturbations},
language = {eng},
number = {3},
pages = {341-379},
publisher = {Elsevier},
title = {Stability of radially symmetric travelling waves in reaction–diffusion equations},
url = {http://eudml.org/doc/78622},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Roussier, Violaine
TI - Stability of radially symmetric travelling waves in reaction–diffusion equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 3
SP - 341
EP - 379
LA - eng
KW - spherically symmetric perturbations
UR - http://eudml.org/doc/78622
ER -

References

top
  1. [1] Aronson D.G., Weinberger H.F., Nonlinear diffusion in population genetics, combustion, and nerve propagation, in: Partial Differential Equations and Related Topics, Lecture Notes in Math., vol. 446, Springer, New York, 1975, pp. 5-49. Zbl0325.35050MR427837
  2. [2] Aronson D.G., Weinberger H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math.30 (1978) 33-76. Zbl0407.92014MR511740
  3. [3] Fife P.C., Long time behaviour of solutions of bistable nonlinear diffusion equations, Arch. Rational Mech. Anal.70 (1979) 31-46. Zbl0435.35045MR535630
  4. [4] Fife P.C., McLeod J.B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal.65 (1977) 335-361. Zbl0361.35035MR442480
  5. [5] Fisher R.A., The advance of advantageous genes, Ann. of Eugenics7 (1937) 355-369. Zbl63.1111.04JFM63.1111.04
  6. [6] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. Zbl0456.35001MR610244
  7. [7] Jones C.K.R.T., Spherically symmetric solutions of a reaction–diffusion equation, J. Differential Equations49 (1983) 142-169. Zbl0523.35059MR704268
  8. [8] Jones C.K.R.T., Asymptotic behaviour of a reaction–diffusion equation in higher space dimensions, Rocky Mountain J. Math.13 (1983) 355-364. Zbl0528.35054MR702830
  9. [9] Kanel' Ya.I., On the stability of solutions of the cauchy problem for equations arising in the theory of combustion, Mat. Sb.59 (1962) 245-288. MR157130
  10. [10] Kapitula T., Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc.349 (1997) 257-269. Zbl0866.35021MR1360225
  11. [11] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bull. Moskovsk. Gos. Univ.1 (7) (1937) 1-26. 
  12. [12] Levermore C.D., Xin J.X., Multidimensional stability of travelling waves in a bistable reaction–diffusion equation II, Comm. Partial Differential Equations17 (1992) 1901-1924. Zbl0789.35020MR1194744
  13. [13] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  14. [14] Sattinger D.H., Weighted norms for the stability of travelling waves, J. Differential Equations25 (1977) 130-144. Zbl0315.35010MR447813
  15. [15] Taylor A.E., Introduction to Functional Analysis, Wiley, New York, 1961. Zbl0081.10202MR98966
  16. [16] Uchiyama K., Asymptotic behaviour of solutions of reaction–diffusion equations with varying drift coefficients, Arch. Rational Mech. Anal.90 (1983) 291-311. Zbl0618.35058MR801583
  17. [17] Xin J.X., Multidimensional stability of travelling waves in a bistable reaction–diffusion equation I, Comm. Partial Differential Equations17 (1992) 1889-1899. Zbl0789.35019MR1194743

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.