Existence by minimisation of solitary water waves on an ocean of infinite depth

B Buffoni

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 4, page 503-516
  • ISSN: 0294-1449

How to cite

top

Buffoni, B. "Existence by minimisation of solitary water waves on an ocean of infinite depth." Annales de l'I.H.P. Analyse non linéaire 21.4 (2004): 503-516. <http://eudml.org/doc/78627>.

@article{Buffoni2004,
author = {Buffoni, B},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Capillary-gravity water waves; solitary waves; variational methods},
language = {eng},
number = {4},
pages = {503-516},
publisher = {Elsevier},
title = {Existence by minimisation of solitary water waves on an ocean of infinite depth},
url = {http://eudml.org/doc/78627},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Buffoni, B
TI - Existence by minimisation of solitary water waves on an ocean of infinite depth
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 4
SP - 503
EP - 516
LA - eng
KW - Capillary-gravity water waves; solitary waves; variational methods
UR - http://eudml.org/doc/78627
ER -

References

top
  1. [1] Babenko K.I, Some remarks on the theory of surface waves of finite amplitude, Soviet Math. Dokl.35 (1987) 599-603. Zbl0641.76007MR898306
  2. [2] Babenko K.I, On a local existence theorem in the theory of surface waves of finite amplitude, Soviet Math. Dokl.35 (1987) 647-650. Zbl0641.76008MR899856
  3. [3] B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation, preprint. Zbl1110.76308MR2073504
  4. [4] Buffoni B, Dancer E.N, Toland J.F, The regularity and local bifurcation of steady periodic water waves, Arch. Rational Mech. Anal.152 (2000) 207-240. Zbl0959.76010MR1764945
  5. [5] B. Buffoni, É. Séré, J.F. Toland, Surface water waves as saddle points of the energy, Calculus of Variations and Partial Differential Equations, submitted for publication. Zbl1222.76019
  6. [6] B. Buffoni, É. Séré, J.F. Toland, Minimisation methods for quasi-linear problems, with an application to periodic water waves, preprint. Zbl1077.76058MR2139201
  7. [7] Garabedian P.R, Surface waves of finite depth, J. Anal. Math.14 (1965) 161-169. Zbl0128.44502MR184511
  8. [8] Iooss G, Kirrmann P, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth, Existence of solitary waves, Arch. Rational Mech. Anal.136 (1998) 1-19. Zbl0879.76011MR1423002
  9. [9] Logan B.F, Hilbert transform of a function having a bounded integral and a bounded derivative, SIAM J. Math. Anal.14 (1983) 247-248. Zbl0507.44006MR688574
  10. [10] Stuart C.A, Bifurcation into Spectral Gaps, Bull. Belg. Math. Soc. Simon Stevin, 1995. Zbl0864.47037MR1361485
  11. [11] Stuart C.A, Bifurcation from the essential spectrum, in: Topological Nonlinear Analysis II (Frascati, 1995), Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser, Boston, 1997, pp. 397-443. Zbl0888.47045MR1453894
  12. [12] Turner R.E.L, A variational approach to surface solitary waves, J. Differential Equations55 (1984) 401-438. Zbl0574.76015MR766131
  13. [13] Zygmund A, Trigonometric Series I, II, Cambridge University Press, Cambridge, 1959. Zbl0367.42001MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.