The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations

Alkis S Tersenov

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 4, page 533-541
  • ISSN: 0294-1449

How to cite

top

Tersenov, Alkis S. "The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations." Annales de l'I.H.P. Analyse non linéaire 21.4 (2004): 533-541. <http://eudml.org/doc/78629>.

@article{Tersenov2004,
author = {Tersenov, Alkis S},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasilinear parabolic equations; global existence; convective diffusion equation; role of the gradient term; preventing of the blow-up},
language = {eng},
number = {4},
pages = {533-541},
publisher = {Elsevier},
title = {The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations},
url = {http://eudml.org/doc/78629},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Tersenov, Alkis S
TI - The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 4
SP - 533
EP - 541
LA - eng
KW - quasilinear parabolic equations; global existence; convective diffusion equation; role of the gradient term; preventing of the blow-up
UR - http://eudml.org/doc/78629
ER -

References

top
  1. [1] Aguirre J, Escobedo M, On the blow-up of a convective reaction diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A123 (3) (1993) 433-460. Zbl0801.35038MR1226611
  2. [2] Bandle C, Levine H.A, Fujita type phenomena for reaction-diffusion equations with convection like terms, Differential Integral Equations7 (5–6) (1994) 1169-1193. Zbl0811.35044MR1269650
  3. [3] Chipot M, Weissler F.B, Some blowup results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal.20 (1989) 886-907. Zbl0682.35010MR1000727
  4. [4] Chlebik M, Fila M, Quittner P, Blow-up of positive solutions of a semilinear parabolic equation with a gradient term, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal.10 (4) (2003) 525-537. Zbl1028.35071MR1978587
  5. [5] Fila M, Remarks on blow up for a nonlinear parabolic equation with gradient term, Proc. Amer. Math. Soc.111 (1991) 795-801. Zbl0768.35047MR1052569
  6. [6] Kawohl B, Peletier L.A, Observations on blow up and dead cores for nonlinear parabolic equations, Math. Z.202 (1989) 207-217. Zbl0661.35053MR1013085
  7. [7] Quittner P, Blow-up for semilinear parabolic equations with a gradient term, Math. Mehods Appl. Sci.14 (1991) 413-417. Zbl0768.35049MR1119238
  8. [8] Quittner P, On global existence and stationary solutions for two classes of semilinear parabolic problems, Comment. Math. Univ. Carolin.34 (1) (1993) 105-124. Zbl0794.35089MR1240209
  9. [9] Ladyzhenskaja O.A, Solonnikov V.A, Uraltseva N.N, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Amer. Math. Society, Providence, RI, 1968. 
  10. [10] Levine H.A, Payne L.E, Sacks P.E, Straughan B, Analysis of a convective reaction-diffusion equation, SIAM J. Math. Anal.20 (1) (1989) 133-147. Zbl0702.35126MR977493
  11. [11] Lieberman G, Second Order Parabolic Equations, World Scientific, River Edge, NJ, 1996. Zbl0884.35001MR1465184
  12. [12] Samarskii A.A, Galaktionov V.A, Kurdjumov S.P, Mikhailov A.P, Blow-up in quasilinear parabolic equations, in: de Gruyter Expositions Math., vol. 19, de Gruyter, Berlin, 1995, pp. 535. Zbl1020.35001MR1330922
  13. [13] Souplet Ph, Finite time blow-up for a nonlinear parabolic equation with a gradient term and applications, Math. Mehods Appl. Sci.19 (1996) 1317-1333. Zbl0858.35067MR1412998
  14. [14] Souplet Ph, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations15 (2) (2002) 237-256. Zbl1015.35016MR1870471
  15. [15] Souplet Ph, Weissler F.B, Self-similar subsolutions and blow-up for nonlinear parabolic equations, J. Math. Anal. Appl.212 (1997) 60-74. Zbl0892.35011MR1460184
  16. [16] Souplet Ph, Weissler F.B, Poincare inequality and global solutions of a nonlinear parabolic equations, Ann. Inst. H. Poincaré Anal. Nonlineaire16 (3) (1999) 337-373. Zbl0924.35065MR1687278
  17. [17] Tersenov Al, On the first boundary value problem for quasilinear parabolic equations with two independent variables, Arch. Ration. Mech. Anal.152 (2000) 81-92. Zbl0962.35094MR1760666
  18. [18] Tersenov Al, Tersenov Ar, Global solvability for a class of quasilinear parabolic equations, Indiana Univ. Math. J.50 (4) (2001) 1899-1913. Zbl1101.35331MR1889087
  19. [19] Tersenov Al, Estimate of the solution of the Dirichlet problem for parabolic equations and applications, J. Math. Anal. Appl.273 (1) (2002) 206-216. Zbl1121.35324MR1933026
  20. [20] Tersenov Al, Tersenov Ar, On the Cauchy problem for a class of quasilinear parabolic equations, Ann. Mat. Pura Appl.182 (3) (2003) 325-336. Zbl1223.35200MR2000449

NotesEmbed ?

top

You must be logged in to post comments.