The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations

Alkis S Tersenov

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 4, page 533-541
  • ISSN: 0294-1449

How to cite

top

Tersenov, Alkis S. "The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations." Annales de l'I.H.P. Analyse non linéaire 21.4 (2004): 533-541. <http://eudml.org/doc/78629>.

@article{Tersenov2004,
author = {Tersenov, Alkis S},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasilinear parabolic equations; global existence; convective diffusion equation; role of the gradient term; preventing of the blow-up},
language = {eng},
number = {4},
pages = {533-541},
publisher = {Elsevier},
title = {The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations},
url = {http://eudml.org/doc/78629},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Tersenov, Alkis S
TI - The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 4
SP - 533
EP - 541
LA - eng
KW - quasilinear parabolic equations; global existence; convective diffusion equation; role of the gradient term; preventing of the blow-up
UR - http://eudml.org/doc/78629
ER -

References

top
  1. [1] Aguirre J, Escobedo M, On the blow-up of a convective reaction diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A123 (3) (1993) 433-460. Zbl0801.35038MR1226611
  2. [2] Bandle C, Levine H.A, Fujita type phenomena for reaction-diffusion equations with convection like terms, Differential Integral Equations7 (5–6) (1994) 1169-1193. Zbl0811.35044MR1269650
  3. [3] Chipot M, Weissler F.B, Some blowup results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal.20 (1989) 886-907. Zbl0682.35010MR1000727
  4. [4] Chlebik M, Fila M, Quittner P, Blow-up of positive solutions of a semilinear parabolic equation with a gradient term, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal.10 (4) (2003) 525-537. Zbl1028.35071MR1978587
  5. [5] Fila M, Remarks on blow up for a nonlinear parabolic equation with gradient term, Proc. Amer. Math. Soc.111 (1991) 795-801. Zbl0768.35047MR1052569
  6. [6] Kawohl B, Peletier L.A, Observations on blow up and dead cores for nonlinear parabolic equations, Math. Z.202 (1989) 207-217. Zbl0661.35053MR1013085
  7. [7] Quittner P, Blow-up for semilinear parabolic equations with a gradient term, Math. Mehods Appl. Sci.14 (1991) 413-417. Zbl0768.35049MR1119238
  8. [8] Quittner P, On global existence and stationary solutions for two classes of semilinear parabolic problems, Comment. Math. Univ. Carolin.34 (1) (1993) 105-124. Zbl0794.35089MR1240209
  9. [9] Ladyzhenskaja O.A, Solonnikov V.A, Uraltseva N.N, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Amer. Math. Society, Providence, RI, 1968. 
  10. [10] Levine H.A, Payne L.E, Sacks P.E, Straughan B, Analysis of a convective reaction-diffusion equation, SIAM J. Math. Anal.20 (1) (1989) 133-147. Zbl0702.35126MR977493
  11. [11] Lieberman G, Second Order Parabolic Equations, World Scientific, River Edge, NJ, 1996. Zbl0884.35001MR1465184
  12. [12] Samarskii A.A, Galaktionov V.A, Kurdjumov S.P, Mikhailov A.P, Blow-up in quasilinear parabolic equations, in: de Gruyter Expositions Math., vol. 19, de Gruyter, Berlin, 1995, pp. 535. Zbl1020.35001MR1330922
  13. [13] Souplet Ph, Finite time blow-up for a nonlinear parabolic equation with a gradient term and applications, Math. Mehods Appl. Sci.19 (1996) 1317-1333. Zbl0858.35067MR1412998
  14. [14] Souplet Ph, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations15 (2) (2002) 237-256. Zbl1015.35016MR1870471
  15. [15] Souplet Ph, Weissler F.B, Self-similar subsolutions and blow-up for nonlinear parabolic equations, J. Math. Anal. Appl.212 (1997) 60-74. Zbl0892.35011MR1460184
  16. [16] Souplet Ph, Weissler F.B, Poincare inequality and global solutions of a nonlinear parabolic equations, Ann. Inst. H. Poincaré Anal. Nonlineaire16 (3) (1999) 337-373. Zbl0924.35065MR1687278
  17. [17] Tersenov Al, On the first boundary value problem for quasilinear parabolic equations with two independent variables, Arch. Ration. Mech. Anal.152 (2000) 81-92. Zbl0962.35094MR1760666
  18. [18] Tersenov Al, Tersenov Ar, Global solvability for a class of quasilinear parabolic equations, Indiana Univ. Math. J.50 (4) (2001) 1899-1913. Zbl1101.35331MR1889087
  19. [19] Tersenov Al, Estimate of the solution of the Dirichlet problem for parabolic equations and applications, J. Math. Anal. Appl.273 (1) (2002) 206-216. Zbl1121.35324MR1933026
  20. [20] Tersenov Al, Tersenov Ar, On the Cauchy problem for a class of quasilinear parabolic equations, Ann. Mat. Pura Appl.182 (3) (2003) 325-336. Zbl1223.35200MR2000449

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.