Poincaré's inequality and global solutions of a nonlinear parabolic equation
Philippe Souplet; Fred B. Weissler
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 3, page 335-371
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSouplet, Philippe, and Weissler, Fred B.. "Poincaré's inequality and global solutions of a nonlinear parabolic equation." Annales de l'I.H.P. Analyse non linéaire 16.3 (1999): 335-371. <http://eudml.org/doc/78468>.
@article{Souplet1999,
author = {Souplet, Philippe, Weissler, Fred B.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global existence; blow-up; exponential decay; gradient term},
language = {eng},
number = {3},
pages = {335-371},
publisher = {Gauthier-Villars},
title = {Poincaré's inequality and global solutions of a nonlinear parabolic equation},
url = {http://eudml.org/doc/78468},
volume = {16},
year = {1999},
}
TY - JOUR
AU - Souplet, Philippe
AU - Weissler, Fred B.
TI - Poincaré's inequality and global solutions of a nonlinear parabolic equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 335
EP - 371
LA - eng
KW - global existence; blow-up; exponential decay; gradient term
UR - http://eudml.org/doc/78468
ER -
References
top- [Ad] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [AE] J. Aguirre and M. Escobedo, On the blow up of solutions for a convective reaction diffusion equation, Proc. Roy. Soc. Edinburgh., Vol. 123, 1993, pp. 433-460. Zbl0801.35038MR1226611
- [Am] H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa, Vol. 11, 4, 1984, pp. 593-676. Zbl0625.35045MR808425
- [AW] L. Alfonsi and F.B. Weissler, blow-up in IRN for a parabolic equation with a damping nonlinear gradient term, Progress in nonlinear differential equations1992, N. G. Lloyd et al. Eds, Birkhäuser. Zbl0795.35051MR1167826
- [BC] H. Brezis and T. Cazenave, to appear.
- [B] F.E. Browder, On the spectral theory of elliptic operators, I, Math. Ann., Vol. 142, 1961, pp. 22-30. Zbl0104.07502MR209909
- [CW] M. Chipot and F.B. Weissler, Some blow up results for a nonlinear parabolic problem with a gradient term, SIAM J. Math. Anal., Vol. 20, 4, 1989, pp. 886-907. Zbl0682.35010MR1000727
- [E] M. Escobedo, Personal communication.
- [F] M. Fila, Remarks on blow up for a nonlinear parabolic equation with a gradient term, Proc. Amer. Math. Soc., Vol. 111, 2, 1991, pp. 795-801. Zbl0768.35047MR1052569
- [Fr1] A. Friedman, Partial Differential Equations, 1969, Holt, Rinehart and Winston, Inc., New York. Zbl0224.35002MR445088
- [Fr2] A. Friedman, Blow up of solutions of parabolic equations, Nonlinear diffusion equations and their equilibrium states, I1988, W. M. Ni et al. Eds, Springer. Zbl0669.35047MR956073
- [H] W. Hayman, Some bounds for principal frequency, ApplicableAnalysis, Vol. 7, 1978, pp. 247-254. Zbl0383.35053MR492339
- [KP] B. Kawohl and L.A. Peletier, Observations on blow up and dead cores for nonlinear parabolic equations, Math. Z., Vol. 202, 1989, pp. 207-217. Zbl0661.35053MR1013085
- [LSU] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, 1968, Translations of Mathematical Monographs, Amer. Math. Soc., Providence, RI. Zbl0174.15403MR241822
- [LN] T. Lee and W. Ni, Globalexistence, large time behaviour and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., Vol. 333, 1, 1992, pp. 365-378. Zbl0785.35011MR1057781
- [LPSS] H.A. Levine, L.N. Payne, P.E. Sacks and B. Straughan, Analysis of convective reaction-diffusion equation (II), SIAM J. Math. Anal., Vol. 20, 1, 1989, pp. 133-147. Zbl0702.35126MR977493
- [L] E.A. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., Vol. 74, 1983, pp. 441-448. Zbl0538.35058MR724014
- [Q1] P. Quittner, Blow-up for semilinear parabolic equations with a gradient term, Math. Meth. Appl. Sc., Vol. 14, 1991, pp. 413-417. Zbl0768.35049MR1119238
- [Q2] P. Quittner, On global existence and stationary solutions for two classes of semilinear parabolic equations, Comment. Math. Univ. Carolinae, Vol. 34, 1, 1993, pp. 105-124. Zbl0794.35089MR1240209
- [O] R. Osserman, A note on Hayman's theorem on the bass note of a drum, Comment. Math. Helvetici, Vol. 52, 11977, pp. 545-555. Zbl0374.52008MR459099
- [S1] P. Souplet, Résultats d'explosion en temps fini pour une équation de la chaleur non linéaire, C. R. Acad. Sc. Paris, Vol. 321, Série I, 1995, pp. 721-726. Zbl0843.35044MR1354713
- [S2] P. Souplet, Finite time blow up for a nonlinear parabolic equation with a gradient term and applications, Math. Meth. Appl. Sc., Vol. 19, 1996, pp. 1317-1333. Zbl0858.35067MR1412998
- [S3] P. Souplet, Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations, Communications in Partial Differential Equations, to appear. Zbl0926.35064MR1680893
- [STW] P. Souplet, S. Tayachi and F.B. Weissler, Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., Vol. 48, 3, 1996, pp. 655-682. Zbl0990.35061MR1422101
- [SW] P. Souplet and F.B. Weissler, Self-similar sub-solutions and blow-up for nonlinear parabolic equations, J. Math. Anal. Appl., Vol. 212, 1997, pp. 60-74. Zbl0892.35011MR1460184
- [W] F.B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis, Vol. 32, 4, 1979, pp. 277-296. Zbl0419.47031MR538855
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.