An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions
J. Droniou; C. Imbert; J. Vovelle
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 5, page 689-714
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDroniou, J., Imbert, C., and Vovelle, J.. "An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 689-714. <http://eudml.org/doc/78635>.
@article{Droniou2004,
author = {Droniou, J., Imbert, C., Vovelle, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {initial-boundary value problem; kinetic techniques},
language = {eng},
number = {5},
pages = {689-714},
publisher = {Elsevier},
title = {An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions},
url = {http://eudml.org/doc/78635},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Droniou, J.
AU - Imbert, C.
AU - Vovelle, J.
TI - An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 689
EP - 714
LA - eng
KW - initial-boundary value problem; kinetic techniques
UR - http://eudml.org/doc/78635
ER -
References
top- [1] Bardos C., le Roux A.Y., Nédélec J.-C., First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations4 (1979) 1017-1034. Zbl0418.35024MR542510
- [2] Chainais-Hillairet C., Grenier E., Numerical boundary layers for hyperbolic systems in 1-D, M2AN Math. Model. Numer. Anal.35 (2001) 91-106. Zbl0980.65093MR1811982
- [3] Gisclon M., Serre D., Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov, RAIRO Modél. Math. Anal. Numér.31 (1997) 359-380. Zbl0873.65087MR1451347
- [4] Grenier E., Guès O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations143 (1998) 110-146. Zbl0896.35078MR1604888
- [5] Guès O., Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann. Inst. Fourier (Grenoble)45 (1995) 973-1006. Zbl0831.34023MR1359836
- [6] C. Imbert, J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM, Mathematical Analysis, in press. Zbl1085.35099
- [7] Joseph K.T., LeFloch P.G., Boundary layers in weak solutions of hyperbolic conservation laws, Arch. Ration. Mech. Anal.147 (1999) 47-88. Zbl0959.35119MR1704856
- [8] Kružkov S.N., First order quasilinear equations with several independent variables, Mat. Sb. (N.S.)81 (123) (1970) 228-255. Zbl0215.16203MR267257
- [9] Kuznecov N.N., The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation, Ž. Vyčisl. Mat. i Mat. Fiz.16 (1976) 1489-1502, 1627. Zbl0354.35021MR483509
- [10] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994) 169-191. Zbl0820.35094MR1201239
- [11] Otto F., Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 729-734. Zbl0852.35013MR1387428
- [12] Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl. (9)77 (1998) 1055-1064. Zbl0919.35088MR1661021
- [13] Tadmor E., Tang T., Pointwise error estimates for relaxation approximations to conservation laws, SIAM J. Math. Anal.32 (2000) 870-886, (electronic). Zbl0979.35098MR1814742
- [14] Tang T., Error estimates of approximate solutions for nonlinear scalar conservation laws, in: Hyperbolic Problems: Theory, Numerics, Applications (Magdeburg, 2000), vols. I, II, Internat. Ser. Numer. Math., vol. 141, Birkhäuser, Basel, 2001, pp. 873-882. MR1871175
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.