An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions

J. Droniou; C. Imbert; J. Vovelle

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 5, page 689-714
  • ISSN: 0294-1449

How to cite

top

Droniou, J., Imbert, C., and Vovelle, J.. "An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 689-714. <http://eudml.org/doc/78635>.

@article{Droniou2004,
author = {Droniou, J., Imbert, C., Vovelle, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {initial-boundary value problem; kinetic techniques},
language = {eng},
number = {5},
pages = {689-714},
publisher = {Elsevier},
title = {An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions},
url = {http://eudml.org/doc/78635},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Droniou, J.
AU - Imbert, C.
AU - Vovelle, J.
TI - An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 689
EP - 714
LA - eng
KW - initial-boundary value problem; kinetic techniques
UR - http://eudml.org/doc/78635
ER -

References

top
  1. [1] Bardos C., le Roux A.Y., Nédélec J.-C., First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations4 (1979) 1017-1034. Zbl0418.35024MR542510
  2. [2] Chainais-Hillairet C., Grenier E., Numerical boundary layers for hyperbolic systems in 1-D, M2AN Math. Model. Numer. Anal.35 (2001) 91-106. Zbl0980.65093MR1811982
  3. [3] Gisclon M., Serre D., Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov, RAIRO Modél. Math. Anal. Numér.31 (1997) 359-380. Zbl0873.65087MR1451347
  4. [4] Grenier E., Guès O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations143 (1998) 110-146. Zbl0896.35078MR1604888
  5. [5] Guès O., Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann. Inst. Fourier (Grenoble)45 (1995) 973-1006. Zbl0831.34023MR1359836
  6. [6] C. Imbert, J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM, Mathematical Analysis, in press. Zbl1085.35099
  7. [7] Joseph K.T., LeFloch P.G., Boundary layers in weak solutions of hyperbolic conservation laws, Arch. Ration. Mech. Anal.147 (1999) 47-88. Zbl0959.35119MR1704856
  8. [8] Kružkov S.N., First order quasilinear equations with several independent variables, Mat. Sb. (N.S.)81 (123) (1970) 228-255. Zbl0215.16203MR267257
  9. [9] Kuznecov N.N., The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation, Ž. Vyčisl. Mat. i Mat. Fiz.16 (1976) 1489-1502, 1627. Zbl0354.35021MR483509
  10. [10] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994) 169-191. Zbl0820.35094MR1201239
  11. [11] Otto F., Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 729-734. Zbl0852.35013MR1387428
  12. [12] Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl. (9)77 (1998) 1055-1064. Zbl0919.35088MR1661021
  13. [13] Tadmor E., Tang T., Pointwise error estimates for relaxation approximations to conservation laws, SIAM J. Math. Anal.32 (2000) 870-886, (electronic). Zbl0979.35098MR1814742
  14. [14] Tang T., Error estimates of approximate solutions for nonlinear scalar conservation laws, in: Hyperbolic Problems: Theory, Numerics, Applications (Magdeburg, 2000), vols. I, II, Internat. Ser. Numer. Math., vol. 141, Birkhäuser, Basel, 2001, pp. 873-882. MR1871175

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.