Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains
Vladimir Kondratiev; Vitali Liskevich; Vitaly Moroz
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 1, page 25-43
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKondratiev, Vladimir, Liskevich, Vitali, and Moroz, Vitaly. "Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 25-43. <http://eudml.org/doc/78646>.
@article{Kondratiev2005,
author = {Kondratiev, Vladimir, Liskevich, Vitali, Moroz, Vitaly},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Superlinear elliptic equations; Cone-like domains; Positive solutions; Nonexistence; Asymptotic behavior of solutions},
language = {eng},
number = {1},
pages = {25-43},
publisher = {Elsevier},
title = {Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains},
url = {http://eudml.org/doc/78646},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Kondratiev, Vladimir
AU - Liskevich, Vitali
AU - Moroz, Vitaly
TI - Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 25
EP - 43
LA - eng
KW - Superlinear elliptic equations; Cone-like domains; Positive solutions; Nonexistence; Asymptotic behavior of solutions
UR - http://eudml.org/doc/78646
ER -
References
top- [1] Agmon S., On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, in: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), Liguori, Naples, 1983, pp. 19-52. Zbl0595.58044MR819005
- [2] Ancona A., First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. Anal. Math.72 (1997) 45-92. Zbl0944.58016MR1482989
- [3] Bandle C., Essén M., On positive solutions of Emden equations in cone-like domains, Arch. Rational Mech. Anal.112 (1990) 319-338. Zbl0727.35051MR1077263
- [4] Bandle C., Levine H.A., On the existence and nonexistence of global solutions of reaction–diffusion equations in sectorial domains, Trans. Amer. Math. Soc.316 (1989) 595-622. Zbl0693.35081MR937878
- [5] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
- [6] Bidaut-Véron M.-F., Local and global behavior of solutions of quasilinear equations of Emden–Fowler type, Arch. Rational Mech. Anal.107 (1989) 293-324. Zbl0696.35022MR1004713
- [7] Bidaut-Véron M.-F., Pohozaev S., Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math.84 (2001) 1-49. Zbl1018.35040MR1849197
- [8] Birindelli I., Mitidieri E., Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 1217-1247. Zbl0919.35023MR1664101
- [9] Dancer E.N., Sweers G., On the existence of a maximal weak solution for a semilinear elliptic equation, Differential Integral Equations2 (1989) 533-540. Zbl0732.35027MR996759
- [10] Deng K., Levine H.A., The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl.243 (2000) 85-126. Zbl0942.35025MR1742850
- [11] Ding W.Y., Ni W.-M., On the elliptic equation and related topics, Duke Math. J.52 (1985) 485-506. Zbl0592.35048MR792184
- [12] Egnell H., Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc.330 (1992) 191-201. Zbl0766.35014MR1034662
- [13] Fukushima M., Oshima Y., Takeda H., Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [14] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
- [15] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Zbl1042.35002MR737190
- [16] Grigor'yan A., Hansen W., A Liouville property for Schrödinger operators, Math. Ann.312 (1998) 659-716. Zbl0938.31007MR1660247
- [17] Kondratiev V., Liskevich V., Sobol Z., Second-order semilinear elliptic inequalities in exterior domains, J. Differential Equations187 (2003) 429-455. Zbl1247.35041MR1949449
- [18] Kondratiev V., Liskevich V., Sobol Z., Us A., Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains, J. London Math. Soc. (2)69 (2004) 107-127. Zbl1047.35006MR2025330
- [19] Laptev G.G., Absence of global positive solutions of systems of semilinear elliptic inequalities in cones, Izv. Ross. Akad. Nauk Ser. Mat.64 (2000) 107-124, (Russian); translation in, Izv. Math.64 (2000) 1197-1215. Zbl1013.35041MR1817251
- [20] Levine H.A., The role of critical exponents in blowup theorems, SIAM Rev.32 (1990) 262-288. Zbl0706.35008MR1056055
- [21] Littman W., Stampaccia G., Weinberger H.F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)17 (1963) 43-77. Zbl0116.30302MR161019
- [22] Murata M., On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci.26 (1990) 585-627. Zbl0726.31009MR1081506
- [23] Murata M., Semismall perturbations in the Martin theory for elliptic equations, Israel J. Math.102 (1997) 29-60. Zbl0891.35013MR1489100
- [24] Murata M., Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations, J. Funct. Anal.194 (2002) 53-141. Zbl1119.35317MR1929139
- [25] Mitidieri E., Pohožaev S.I., A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova234 (2001) 1-384, (in Russian). Zbl1074.35500MR1879326
- [26] Ni W.M., On the elliptic equation , its generalizations, and applications in geometry, Indiana Univ. Math. J.31 (1982) 493-529. Zbl0496.35036MR662915
- [27] Pinchover Y., On the equivalence of Green functions of second order elliptic equations in , Differential Integral Equations5 (1992) 481-493. Zbl0772.35015MR1157482
- [28] Pinchover Y., On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 313-341. Zbl0837.35010MR1277898
- [29] Pinchover Y., Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann.314 (1999) 555-590. Zbl0928.35010MR1704549
- [30] Pinsky R.G., Positive Harmonic Functions and Diffusion, Cambridge Univ. Press, 1995. Zbl0858.31001MR1326606
- [31] Serrin J., Weinberger H.F., Isolated singularities of solutions of linear elliptic equations, Amer. J. Math.88 (1966) 258-272. Zbl0137.07001MR201815
- [32] Serrin J., Zou H., Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math.189 (2002) 79-142. Zbl1059.35040MR1946918
- [33] Struwe M., Variational Methods, Springer-Verlag, Berlin, 1990. Zbl0746.49010MR1078018
- [34] Toland J.F., On positive solutions of , Math. Z.182 (1983) 351-357. Zbl0491.35048MR696532
- [35] Véron L., Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow, 1996. Zbl0858.35018MR1424468
- [36] Vogt H., Equivalence of pointwise and global ellipticity estimates, Math. Nachr.237 (2002) 125-128. Zbl1200.35077MR1894356
- [37] Zhang Qi S., An optimal parabolic estimate and its applications in prescribing scalar curvature on some open manifolds with , Math. Ann.316 (2000) 703-731. Zbl0974.53031MR1758450
- [38] Zhang Qi S., A Liouville type theorem for some critical semilinear elliptic equations on noncompact manifolds, Indiana Univ. Math. J.50 (2001) 1915-1936. Zbl1082.35067MR1889088
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.