Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains

Vladimir Kondratiev; Vitali Liskevich; Vitaly Moroz

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 1, page 25-43
  • ISSN: 0294-1449

How to cite

top

Kondratiev, Vladimir, Liskevich, Vitali, and Moroz, Vitaly. "Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 25-43. <http://eudml.org/doc/78646>.

@article{Kondratiev2005,
author = {Kondratiev, Vladimir, Liskevich, Vitali, Moroz, Vitaly},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Superlinear elliptic equations; Cone-like domains; Positive solutions; Nonexistence; Asymptotic behavior of solutions},
language = {eng},
number = {1},
pages = {25-43},
publisher = {Elsevier},
title = {Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains},
url = {http://eudml.org/doc/78646},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Kondratiev, Vladimir
AU - Liskevich, Vitali
AU - Moroz, Vitaly
TI - Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 25
EP - 43
LA - eng
KW - Superlinear elliptic equations; Cone-like domains; Positive solutions; Nonexistence; Asymptotic behavior of solutions
UR - http://eudml.org/doc/78646
ER -

References

top
  1. [1] Agmon S., On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, in: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), Liguori, Naples, 1983, pp. 19-52. Zbl0595.58044MR819005
  2. [2] Ancona A., First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. Anal. Math.72 (1997) 45-92. Zbl0944.58016MR1482989
  3. [3] Bandle C., Essén M., On positive solutions of Emden equations in cone-like domains, Arch. Rational Mech. Anal.112 (1990) 319-338. Zbl0727.35051MR1077263
  4. [4] Bandle C., Levine H.A., On the existence and nonexistence of global solutions of reaction–diffusion equations in sectorial domains, Trans. Amer. Math. Soc.316 (1989) 595-622. Zbl0693.35081MR937878
  5. [5] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
  6. [6] Bidaut-Véron M.-F., Local and global behavior of solutions of quasilinear equations of Emden–Fowler type, Arch. Rational Mech. Anal.107 (1989) 293-324. Zbl0696.35022MR1004713
  7. [7] Bidaut-Véron M.-F., Pohozaev S., Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math.84 (2001) 1-49. Zbl1018.35040MR1849197
  8. [8] Birindelli I., Mitidieri E., Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 1217-1247. Zbl0919.35023MR1664101
  9. [9] Dancer E.N., Sweers G., On the existence of a maximal weak solution for a semilinear elliptic equation, Differential Integral Equations2 (1989) 533-540. Zbl0732.35027MR996759
  10. [10] Deng K., Levine H.A., The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl.243 (2000) 85-126. Zbl0942.35025MR1742850
  11. [11] Ding W.Y., Ni W.-M., On the elliptic equation Δ u + K u ( n + 2 ) / ( n - 2 ) = 0 and related topics, Duke Math. J.52 (1985) 485-506. Zbl0592.35048MR792184
  12. [12] Egnell H., Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc.330 (1992) 191-201. Zbl0766.35014MR1034662
  13. [13] Fukushima M., Oshima Y., Takeda H., Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  14. [14] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981) 525-598. Zbl0465.35003MR615628
  15. [15] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Zbl1042.35002MR737190
  16. [16] Grigor'yan A., Hansen W., A Liouville property for Schrödinger operators, Math. Ann.312 (1998) 659-716. Zbl0938.31007MR1660247
  17. [17] Kondratiev V., Liskevich V., Sobol Z., Second-order semilinear elliptic inequalities in exterior domains, J. Differential Equations187 (2003) 429-455. Zbl1247.35041MR1949449
  18. [18] Kondratiev V., Liskevich V., Sobol Z., Us A., Estimates of heat kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains, J. London Math. Soc. (2)69 (2004) 107-127. Zbl1047.35006MR2025330
  19. [19] Laptev G.G., Absence of global positive solutions of systems of semilinear elliptic inequalities in cones, Izv. Ross. Akad. Nauk Ser. Mat.64 (2000) 107-124, (Russian); translation in, Izv. Math.64 (2000) 1197-1215. Zbl1013.35041MR1817251
  20. [20] Levine H.A., The role of critical exponents in blowup theorems, SIAM Rev.32 (1990) 262-288. Zbl0706.35008MR1056055
  21. [21] Littman W., Stampaccia G., Weinberger H.F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)17 (1963) 43-77. Zbl0116.30302MR161019
  22. [22] Murata M., On construction of Martin boundaries for second order elliptic equations, Publ. Res. Inst. Math. Sci.26 (1990) 585-627. Zbl0726.31009MR1081506
  23. [23] Murata M., Semismall perturbations in the Martin theory for elliptic equations, Israel J. Math.102 (1997) 29-60. Zbl0891.35013MR1489100
  24. [24] Murata M., Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations, J. Funct. Anal.194 (2002) 53-141. Zbl1119.35317MR1929139
  25. [25] Mitidieri E., Pohožaev S.I., A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova234 (2001) 1-384, (in Russian). Zbl1074.35500MR1879326
  26. [26] Ni W.M., On the elliptic equation Δ u + K x u ( n + 2 ) / ( n - 2 ) = 0 , its generalizations, and applications in geometry, Indiana Univ. Math. J.31 (1982) 493-529. Zbl0496.35036MR662915
  27. [27] Pinchover Y., On the equivalence of Green functions of second order elliptic equations in R n , Differential Integral Equations5 (1992) 481-493. Zbl0772.35015MR1157482
  28. [28] Pinchover Y., On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 313-341. Zbl0837.35010MR1277898
  29. [29] Pinchover Y., Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann.314 (1999) 555-590. Zbl0928.35010MR1704549
  30. [30] Pinsky R.G., Positive Harmonic Functions and Diffusion, Cambridge Univ. Press, 1995. Zbl0858.31001MR1326606
  31. [31] Serrin J., Weinberger H.F., Isolated singularities of solutions of linear elliptic equations, Amer. J. Math.88 (1966) 258-272. Zbl0137.07001MR201815
  32. [32] Serrin J., Zou H., Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math.189 (2002) 79-142. Zbl1059.35040MR1946918
  33. [33] Struwe M., Variational Methods, Springer-Verlag, Berlin, 1990. Zbl0746.49010MR1078018
  34. [34] Toland J.F., On positive solutions of - Δ u = F x , u , Math. Z.182 (1983) 351-357. Zbl0491.35048MR696532
  35. [35] Véron L., Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow, 1996. Zbl0858.35018MR1424468
  36. [36] Vogt H., Equivalence of pointwise and global ellipticity estimates, Math. Nachr.237 (2002) 125-128. Zbl1200.35077MR1894356
  37. [37] Zhang Qi S., An optimal parabolic estimate and its applications in prescribing scalar curvature on some open manifolds with Ricci 0 , Math. Ann.316 (2000) 703-731. Zbl0974.53031MR1758450
  38. [38] Zhang Qi S., A Liouville type theorem for some critical semilinear elliptic equations on noncompact manifolds, Indiana Univ. Math. J.50 (2001) 1915-1936. Zbl1082.35067MR1889088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.