On positive Liouville theorems and asymptotic behavior of solutions of fuchsian type elliptic operators

Yehuda Pinchover

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 3, page 313-341
  • ISSN: 0294-1449

How to cite

top

Pinchover, Yehuda. "On positive Liouville theorems and asymptotic behavior of solutions of fuchsian type elliptic operators." Annales de l'I.H.P. Analyse non linéaire 11.3 (1994): 313-341. <http://eudml.org/doc/78334>.

@article{Pinchover1994,
author = {Pinchover, Yehuda},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {asymptotic behavior; Fuchsian elliptic operators; isolated singularities; maximum principle; Harnack inequality; positive Liouville theorems},
language = {eng},
number = {3},
pages = {313-341},
publisher = {Gauthier-Villars},
title = {On positive Liouville theorems and asymptotic behavior of solutions of fuchsian type elliptic operators},
url = {http://eudml.org/doc/78334},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Pinchover, Yehuda
TI - On positive Liouville theorems and asymptotic behavior of solutions of fuchsian type elliptic operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 3
SP - 313
EP - 341
LA - eng
KW - asymptotic behavior; Fuchsian elliptic operators; isolated singularities; maximum principle; Harnack inequality; positive Liouville theorems
UR - http://eudml.org/doc/78334
ER -

References

top
  1. [1] S. Agmon, On positivity and Decay of Second Order Elliptic Equations on Riemannian Manifolds, Methods of Functional Analysis and Theory of Elliptic Equations, D. GRECO, Ed., Liguori, Naples, 1982, pp. 19-52. Zbl0595.58044MR819005
  2. [2] H. Berestycki, L. Caffarelli and L. Nirenberg, Uniform Estimates for Regularization of Free Boundary Problems, Analysis and Partial Differential Equations, C. SADOSKY Ed., Marcel DECKER, 1990, pp. 567-619. Zbl0702.35252MR1044809
  3. [3] H. Berestycki and L. Nirenberg, Asymptotic Behaviour via the Harnack Inequality, Nonlinear Analysis, a Tribute in Honor of Giovanni Prodi, Scuola Normale Superiore, Pisa, 1991, pp. 135-144. Zbl0840.35011MR1205378
  4. [4] H. Brezis and L. Oswald, Singular Solutions for Some Semilinear Equations, Archive. Rational Mech. Anal., Vol. 99, 1987, pp. 249-259. Zbl0635.35035MR888452
  5. [5] H. Brezis and L. Veron , Removable Singularities for Some Nonlinear Elliptic Equations, Archive. Rational Mech. Anal., Vol. 75, 1980, pp. 1-6. Zbl0459.35032MR592099
  6. [6] L. Caffarelli, E.B. Fabes, S. Mortola and S. Salsa, Boundary Behavior of Nonnegative Solutions of Elliptic Operators in Divergence Form, Indiana Univ. Math. J., Vol. 30, 1981, pp. 621-640. Zbl0512.35038MR620271
  7. [7] Yu.V. Egorov and M.A. Shubin (eds.), Partial Differential Equations III, Encyclopedia of Mathematical Sciences, Vol. 32, Springer-Verlag, Berlin, 1991. Zbl0741.00025MR1133472
  8. [8] D. Gilbarg and J. Serrin, On Isolated Singularities of Solutions of Second Order Elliptic Differential equations, J. Analyse Math., Vol. 4, 1956, pp. 309-340. Zbl0071.09701MR81416
  9. [9] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  10. [10] H. Imai, Picard Principle for Linear Elliptic Differential Operators, Hiroshima Math. J., Vol. 14, 1984, pp. 527-535. Zbl0571.35026MR772983
  11. [11] Ju.T. Kuz'menko, Martin's Boundary for Elliptic Operators in Rn, Izv. Vysš. Učebn. Zaved. Matematika, Vol. 8, 1980, pp. 39-45 (Russian). Zbl0455.35043
  12. [12] E.M. Landis and N.S. Nadirashvili, Positive Solutions of Second Order Elliptic Equations in Unbounded Domains, Math. USSR Sbornik, Vol. 54, 1986, pp. 129-134. Zbl0621.35038
  13. [13] M. Murata, Isolated Singularities and Positive Solutions of Elliptic Equations in Rn, Proc. Japan Acad., Vol. 63, Ser. A, 1987, pp. 146-148. Zbl0652.35026MR906979
  14. [14] M. Murata, Structure of Positive Solutions to (-Δ+V)u=0 in Rn, Duke Math. J., Vol. 53, 1986, pp. 869-943. Zbl0624.35023MR874676
  15. [15] M. Murata, On construction of Martin Boundaries for Second Order Elliptic Equations, Publ. RIMS, Kyoto Univ., Vol. 26, 1990, pp. 585-627. Zbl0726.31009MR1081506
  16. [16] M. Nakai, Martin Boundary Over an Isolated Singularity of Rotation Free Density, J. Math. Soc. Japan, Vol. 26, 1974, pp. 483-507. Zbl0281.30012MR361119
  17. [17] M. Nakai, Picard Principle and Riemann Theorem, Tôhoku Math. J. Second Ser., Vol. 28, 1976, pp. 277-292. Zbl0335.35036MR409857
  18. [18] Y. Pinchover, On Positive Solutions of Second-Order Elliptic Equations, Stability Results and Classification, Duke Math. J., Vol. 57, 1988, pp. 955-980. Zbl0685.35035MR975130
  19. [19] Y. Pinchover, On the Equivalence of Green Functions of Second Order Elliptic Equations in Rn, Differential and Integral Equations, Vol. 5, 1992, pp. 481-493. Zbl0772.35015MR1157482
  20. [20] R.G. Pinsky, A Probabilistic Approach to a Theorem of Gilbarg and Serrin, Israel J. Math., Vol. 74, 1991, pp. 1-12. Zbl0756.35021MR1135225
  21. [21] R.G. Pinsky, A New Approach to the Martin Boundary via Diffusions Conditioned to Hit a Compact Set, Ann. Prob., 1993. Zbl0777.60075MR1207233
  22. [22] J. Serrin, Local Behaviour of Solutions of Quasilinear Equations, Acta Math., Vol. 111, 1964, pp. 247-302. Zbl0128.09101MR170096
  23. [23] J. Serrin, Isolated Singularities of Solutions of Quasilinear Equations, Acta Math., Vol. 113, 1965, pp. 219-240. Zbl0173.39202MR176219
  24. [24] J. Serrin and H.F. Weinberger, Isolated Singularities of Solutions of Linear Elliptic Equations, Amer. J. Math., Vol. 88, 1966, pp. 258-272. Zbl0137.07001MR201815
  25. [25] J.C. Taylor, On the Martin Compactification of a Bounded Lipschitz Domain in a Riemannian Manifold, Ann. Inst. Fourier, Vol. 28, 1978, pp. 25-52. Zbl0363.31010MR486580
  26. [26] J.L. Vazquez and C. Yarur, Schrödinger Equations with Unique Positive Isolated Singularities, Manuscripta Math., Vol. 67, 1990, pp. 143-163. Zbl0723.35025MR1042235
  27. [27] L. Véron, Limit Behaviour of Singular Solutions of Some Semilinear Elliptic Equations, Partial Differential Equations, Banach Center Publications, Vol. 19, PWN-Polish Scientific Publishers, Warsaw, 1987, pp. 311-350. Zbl0661.35027MR1055181
  28. [28] C.S. Yarur, Isolated Singularities for Sublinear Elliptic Equations, Comm. Partial Differential Equations, Vol. 15, 1990, pp. 1361-1379. Zbl0726.35042MR1077470
  29. [29] Z. Zhao, Subcriticality and gaugeability of the Schrödinger Operator, Trans. Amer. Math. Soc., Vol. 334, 1992, pp. 75-96. Zbl0765.60063MR1068934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.