Super-critical boundary bubbling in a semilinear Neumann problem

Manuel del Pino; Monica Musso; Angela Pistoia

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 1, page 45-82
  • ISSN: 0294-1449

How to cite

top

del Pino, Manuel, Musso, Monica, and Pistoia, Angela. "Super-critical boundary bubbling in a semilinear Neumann problem." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 45-82. <http://eudml.org/doc/78647>.

@article{delPino2005,
author = {del Pino, Manuel, Musso, Monica, Pistoia, Angela},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical Sobolev exponent; Neumann boundary conditions; mean curvature; bubble solutions; Lyapunov-Schmidt reduction},
language = {eng},
number = {1},
pages = {45-82},
publisher = {Elsevier},
title = {Super-critical boundary bubbling in a semilinear Neumann problem},
url = {http://eudml.org/doc/78647},
volume = {22},
year = {2005},
}

TY - JOUR
AU - del Pino, Manuel
AU - Musso, Monica
AU - Pistoia, Angela
TI - Super-critical boundary bubbling in a semilinear Neumann problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 45
EP - 82
LA - eng
KW - critical Sobolev exponent; Neumann boundary conditions; mean curvature; bubble solutions; Lyapunov-Schmidt reduction
UR - http://eudml.org/doc/78647
ER -

References

top
  1. [1] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991) 9-25. Zbl0836.35048MR1205370
  2. [2] Adimurthi, Mancini G., Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math.456 (1994) 1-18. Zbl0804.35036MR1301449
  3. [3] Adimurthi, Mancini G., Yadava S.L., The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations20 (3–4) (1995) 591-631. Zbl0847.35047MR1318082
  4. [4] Adimurthi, Pacella F., Yadava S.L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal.113 (1993) 318-350. Zbl0793.35033MR1218099
  5. [5] Adimurthi, Pacella F., Yadava S.L., Characterization of concentration points and L -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations8 (1) (1995) 41-68. Zbl0814.35029MR1296109
  6. [6] Cao D., Noussair E.S., The effect of geometry of the domain boundary in an elliptic Neumann problem, Adv. Differential Equations6 (8) (2001) 931-958. Zbl1140.35411MR1828499
  7. [7] Dancer E.N., Yan S., Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math.189 (2) (1999) 241-262. Zbl0933.35070MR1696122
  8. [8] del Pino M., Dolbeault J., Musso M., “Bubble-tower” radial solutions in the slightly supercritical Brezis–Nirenberg problem, J. Differential Equations193 (2) (2003) 280-306. Zbl1140.35413
  9. [9] del Pino M., Felmer P., Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J.48 (3) (1999) 883-898. Zbl0932.35080MR1736974
  10. [10] del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. PDE16 (2) (2003) 113-145. Zbl1142.35421MR1956850
  11. [11] del Pino M., Felmer P., Wei J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal.31 (1) (1999) 63-79. Zbl0942.35058MR1742305
  12. [12] Fowler R.H., Further studies on Emden's and similar differential equations, Quart. J. Math.2 (1931) 259-288. Zbl0003.23502
  13. [13] Grossi M., A class of solutions for the Neumann problem - Δ u + λ u = u ( N + 2 ) / ( N - 2 ) , Duke Math. J.79 (2) (1995) 309-334. Zbl1043.35507MR1344764
  14. [14] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations11 (2) (2000) 143-175. Zbl0964.35047MR1782991
  15. [15] Gui C., Multi-peak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
  16. [16] Gui C., Ghoussoub N., Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z.229 (3) (1998) 443-474. Zbl0955.35024MR1658569
  17. [17] Gui C., Lin C.-S., Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math.546 (2002) 201-235. Zbl1136.35380MR1900999
  18. [18] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1) (1999) 1-27. Zbl1061.35502MR1721719
  19. [19] Kowalczyk M., Multiple spike layers in the shadow Gierer–Meinhardt system: existence of equilibria and the quasi-invariant manifold, Duke Math. J.98 (1) (1999) 59-111. Zbl0962.35063MR1687412
  20. [20] Li Y.Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations23 (3–4) (1998) 487-545. Zbl0898.35004MR1620632
  21. [21] Li Y.Y., Prescribing scalar curvature on S n and related problems, part I, J. Differential Equations120 (1996) 541-597. Zbl0849.53031MR1383201
  22. [22] Y.Y. Li, L. Zhang, Liouville and Harnack type theorems for semilinear elliptic equations, preprint. Zbl1173.35477
  23. [23] Lin C.-S., Locating the peaks of solutions via the maximum principle, I. The Neumann problem, Comm. Pure Appl. Math.54 (2001) 1065-1095. Zbl1035.35039MR1835382
  24. [24] Lin C.-S., Ni W.-M., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
  25. [25] Ni W.-M., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.44 (1991) 819-851. Zbl0754.35042MR1115095
  26. [26] Ni W.-M., Takagi I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J70 (1993) 247-281. Zbl0796.35056MR1219814
  27. [27] Ni W.-M., B Pan X., Takagi I., Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J.67 (1) (1992) 1-20. Zbl0785.35041MR1174600
  28. [28] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1) (1990) 1-52. Zbl0786.35059MR1040954
  29. [29] Rey O., Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. in PDE22 (1997) 1055-1139. Zbl0891.35040MR1466311
  30. [30] Rey O., An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math.1 (1999) 405-449. Zbl0954.35065MR1707889
  31. [31] O. Rey, J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, part I: N = 3 , J. Funct. Anal., submitted for publication. Zbl1134.35049
  32. [32] Wang X.J., Neumann problem of semilinear elliptic equations involving critical Sobolev exponent, J. Differential Equations93 (1991) 283-301. Zbl1068.34060MR1125221
  33. [33] Wang Z.Q., The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations8 (1995) 1533-1554. Zbl0829.35041MR1329855
  34. [34] Wei J., On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations134 (1) (1997) 104-133. Zbl0873.35007MR1429093

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.