Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : N 4

Olivier Rey; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 4, page 459-484
  • ISSN: 0294-1449

How to cite

top

Rey, Olivier, and Wei, Juncheng. "Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 459-484. <http://eudml.org/doc/78664>.

@article{Rey2005,
author = {Rey, Olivier, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {4},
pages = {459-484},
publisher = {Elsevier},
title = {Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$},
url = {http://eudml.org/doc/78664},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Rey, Olivier
AU - Wei, Juncheng
TI - Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 459
EP - 484
LA - eng
UR - http://eudml.org/doc/78664
ER -

References

top
  1. [1] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical nonlinearity, “A tribute in honour of G. Prodi”, Scuola Norm. Sup. Pisa (1991) 9-25. Zbl0836.35048
  2. [2] Adimurthi, Mancini G., Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math.456 (1994) 1-18. Zbl0804.35036MR1301449
  3. [3] Adimurthi, Pacella F., Yadava S.L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal.113 (1993) 318-350. Zbl0793.35033MR1218099
  4. [4] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, 1989. Zbl0676.58021MR1019828
  5. [5] Bates P., Fusco G., Equilibria with many nuclei for the Cahn–Hilliard equation, J. Differential Equations160 (2000) 283-356. Zbl0990.35016MR1737000
  6. [6] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
  7. [7] Cerami G., Wei J., Multiplicity of multiple interior peaks solutions for some singularly perturbed Neumann problems, Intern. Math. Res. Notes12 (1998) 601-626. Zbl0916.35037MR1635869
  8. [8] Dancer E.N., Yan S., Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math.189 (1999) 241-262. Zbl0933.35070MR1696122
  9. [9] Del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. Partial Differential Equations16 (2003) 113-145. Zbl1142.35421MR1956850
  10. [10] Grossi M., Pistoia A., On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations5 (2000) 1397-1420. Zbl0989.35054MR1785679
  11. [11] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations11 (2000) 143-175. Zbl0964.35047MR1782991
  12. [12] Gierer A., Meinhardt H., A theory of biological pattern formation, Kybernetik (Berlin)12 (1972) 30-39. Zbl0297.92007
  13. [13] Gui C., Multi-peak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
  14. [14] Gui C., Lin C.S., Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math.546 (2002) 201-235. Zbl1136.35380MR1900999
  15. [15] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
  16. [16] C. Gui, J. Wei, On the existence of arbitrary number of bubbles for some semilinear elliptic equations with critical Sobolev exponent, in press. 
  17. [17] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
  18. [18] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 47-82. Zbl0944.35020MR1743431
  19. [19] Khenissy S., Rey O., A criterion for existence of solutions to the supercritical Bahri–Coron's problem, Houston J. Math.30 (2004) 587-613. Zbl1172.35390MR2084920
  20. [20] Kowalczyk M., Multiple spike layers in the shadow Gierer–Meinhardt system: existence of equilibria and quasi-invariant manifold, Duke Math. J.98 (1999) 59-111. Zbl0962.35063MR1687412
  21. [21] Li Y., Ni W.-M., On conformal scalar curvature equation in R n , Duke Math. J.57 (1988) 895-924. Zbl0674.53048MR975127
  22. [22] Li Y.Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations23 (1998) 487-545. Zbl0898.35004MR1620632
  23. [23] Lin C.S., Ni W.M., On the Diffusion Coefficient of a Semilinear Neumann Problem, Lecture Notes in Math., vol. 1340, Springer, New York, 1986. Zbl0704.35050MR974610
  24. [24] Lin C.S., Ni W.N., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
  25. [25] McOwen R., The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math.32 (1979) 783-795. Zbl0426.35029MR539158
  26. [26] Maier-Paape S., Schmitt K., Wang Z.Q., On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions, Comm. Partial Differential Equations22 (1997) 1493-1527. Zbl0895.35040MR1469580
  27. [27] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc.45 (1998) 9-18. Zbl0917.35047MR1490535
  28. [28] Ni W.N., Pan X.B., Takagi I., Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev exponents, Duke Math. J.67 (1992) 1-20. Zbl0785.35041MR1174600
  29. [29] Ni W.N., Takagi I., On the shape of least-energy solutions to a semi-linear problem Neumann problem, Comm. Pure Appl. Math.44 (1991) 819-851. Zbl0754.35042MR1115095
  30. [30] Ni W.M., Takagi I., Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
  31. [31] Rey O., The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  32. [32] Rey O., An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math.1 (1999) 405-449. Zbl0954.35065MR1707889
  33. [33] Rey O., The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl.81 (2002) 655-696. Zbl1066.35033MR1968337
  34. [34] O. Rey, J. Wei, Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, I: N = 3 , J. Funct. Anal., in press. Zbl1134.35049
  35. [35] Wang X.J., Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations93 (1991) 283-310. Zbl0766.35017MR1125221
  36. [36] Wang Z.Q., The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations8 (1995) 1533-1554. Zbl0829.35041MR1329855
  37. [37] Wang Z.Q., High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 1003-1029. Zbl0877.35050MR1361630
  38. [38] Wang Z.Q., Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent, J. Nonlinear Anal.27 (1996) 1281-1306. Zbl0862.35040MR1408871
  39. [39] Wang X., Wei J., On the equation Δ u + K x , u n + 2 n - 2 ± ϵ 2 = 0 in R n , Rend. Circ. Mat. Palermo2 (1995) 365-400. Zbl0859.35029
  40. [40] Wei J., On the interior spike layer solutions of singularly perturbed semilinear Neumann problems, Tohoku Math. J.50 (1998) 159-178. Zbl0918.35024MR1622042
  41. [41] J. Wei, X. Xu, Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in R 3 , Pacific J. Math., in press. Zbl1144.35382MR2194150
  42. [42] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré, Anal. Non Linéaire15 (1998) 459-482. Zbl0910.35049MR1632937
  43. [43] Yan S., On the number of interior multipeak solutions for singularly perturbed Neumann problems, Topol. Methods Nonlinear Anal.12 (1998) 61-78. Zbl0929.35056MR1677747
  44. [44] Zhu M., Uniqueness results through a priori estimates, I. A three dimensional Neumann problem, J. Differential Equations154 (1999) 284-317. Zbl0927.35041MR1691074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.