Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II :
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 4, page 459-484
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRey, Olivier, and Wei, Juncheng. "Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 459-484. <http://eudml.org/doc/78664>.
@article{Rey2005,
author = {Rey, Olivier, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {4},
pages = {459-484},
publisher = {Elsevier},
title = {Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$},
url = {http://eudml.org/doc/78664},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Rey, Olivier
AU - Wei, Juncheng
TI - Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II : $N\ge 4$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 459
EP - 484
LA - eng
UR - http://eudml.org/doc/78664
ER -
References
top- [1] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical nonlinearity, “A tribute in honour of G. Prodi”, Scuola Norm. Sup. Pisa (1991) 9-25. Zbl0836.35048
- [2] Adimurthi, Mancini G., Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math.456 (1994) 1-18. Zbl0804.35036MR1301449
- [3] Adimurthi, Pacella F., Yadava S.L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal.113 (1993) 318-350. Zbl0793.35033MR1218099
- [4] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, 1989. Zbl0676.58021MR1019828
- [5] Bates P., Fusco G., Equilibria with many nuclei for the Cahn–Hilliard equation, J. Differential Equations160 (2000) 283-356. Zbl0990.35016MR1737000
- [6] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
- [7] Cerami G., Wei J., Multiplicity of multiple interior peaks solutions for some singularly perturbed Neumann problems, Intern. Math. Res. Notes12 (1998) 601-626. Zbl0916.35037MR1635869
- [8] Dancer E.N., Yan S., Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math.189 (1999) 241-262. Zbl0933.35070MR1696122
- [9] Del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. Partial Differential Equations16 (2003) 113-145. Zbl1142.35421MR1956850
- [10] Grossi M., Pistoia A., On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations5 (2000) 1397-1420. Zbl0989.35054MR1785679
- [11] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations11 (2000) 143-175. Zbl0964.35047MR1782991
- [12] Gierer A., Meinhardt H., A theory of biological pattern formation, Kybernetik (Berlin)12 (1972) 30-39. Zbl0297.92007
- [13] Gui C., Multi-peak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
- [14] Gui C., Lin C.S., Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math.546 (2002) 201-235. Zbl1136.35380MR1900999
- [15] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
- [16] C. Gui, J. Wei, On the existence of arbitrary number of bubbles for some semilinear elliptic equations with critical Sobolev exponent, in press.
- [17] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
- [18] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 47-82. Zbl0944.35020MR1743431
- [19] Khenissy S., Rey O., A criterion for existence of solutions to the supercritical Bahri–Coron's problem, Houston J. Math.30 (2004) 587-613. Zbl1172.35390MR2084920
- [20] Kowalczyk M., Multiple spike layers in the shadow Gierer–Meinhardt system: existence of equilibria and quasi-invariant manifold, Duke Math. J.98 (1999) 59-111. Zbl0962.35063MR1687412
- [21] Li Y., Ni W.-M., On conformal scalar curvature equation in , Duke Math. J.57 (1988) 895-924. Zbl0674.53048MR975127
- [22] Li Y.Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations23 (1998) 487-545. Zbl0898.35004MR1620632
- [23] Lin C.S., Ni W.M., On the Diffusion Coefficient of a Semilinear Neumann Problem, Lecture Notes in Math., vol. 1340, Springer, New York, 1986. Zbl0704.35050MR974610
- [24] Lin C.S., Ni W.N., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
- [25] McOwen R., The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math.32 (1979) 783-795. Zbl0426.35029MR539158
- [26] Maier-Paape S., Schmitt K., Wang Z.Q., On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions, Comm. Partial Differential Equations22 (1997) 1493-1527. Zbl0895.35040MR1469580
- [27] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc.45 (1998) 9-18. Zbl0917.35047MR1490535
- [28] Ni W.N., Pan X.B., Takagi I., Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev exponents, Duke Math. J.67 (1992) 1-20. Zbl0785.35041MR1174600
- [29] Ni W.N., Takagi I., On the shape of least-energy solutions to a semi-linear problem Neumann problem, Comm. Pure Appl. Math.44 (1991) 819-851. Zbl0754.35042MR1115095
- [30] Ni W.M., Takagi I., Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
- [31] Rey O., The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
- [32] Rey O., An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math.1 (1999) 405-449. Zbl0954.35065MR1707889
- [33] Rey O., The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl.81 (2002) 655-696. Zbl1066.35033MR1968337
- [34] O. Rey, J. Wei, Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, I: , J. Funct. Anal., in press. Zbl1134.35049
- [35] Wang X.J., Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations93 (1991) 283-310. Zbl0766.35017MR1125221
- [36] Wang Z.Q., The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations8 (1995) 1533-1554. Zbl0829.35041MR1329855
- [37] Wang Z.Q., High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 1003-1029. Zbl0877.35050MR1361630
- [38] Wang Z.Q., Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent, J. Nonlinear Anal.27 (1996) 1281-1306. Zbl0862.35040MR1408871
- [39] Wang X., Wei J., On the equation in , Rend. Circ. Mat. Palermo2 (1995) 365-400. Zbl0859.35029
- [40] Wei J., On the interior spike layer solutions of singularly perturbed semilinear Neumann problems, Tohoku Math. J.50 (1998) 159-178. Zbl0918.35024MR1622042
- [41] J. Wei, X. Xu, Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in , Pacific J. Math., in press. Zbl1144.35382MR2194150
- [42] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré, Anal. Non Linéaire15 (1998) 459-482. Zbl0910.35049MR1632937
- [43] Yan S., On the number of interior multipeak solutions for singularly perturbed Neumann problems, Topol. Methods Nonlinear Anal.12 (1998) 61-78. Zbl0929.35056MR1677747
- [44] Zhu M., Uniqueness results through a priori estimates, I. A three dimensional Neumann problem, J. Differential Equations154 (1999) 284-317. Zbl0927.35041MR1691074
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.