Nonlinear problems with solutions exhibiting a free boundary on the boundary
Juan Dávila; Marcelo Montenegro
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 3, page 303-330
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDávila, Juan, and Montenegro, Marcelo. "Nonlinear problems with solutions exhibiting a free boundary on the boundary." Annales de l'I.H.P. Analyse non linéaire 22.3 (2005): 303-330. <http://eudml.org/doc/78658>.
@article{Dávila2005,
author = {Dávila, Juan, Montenegro, Marcelo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear boundary condition; maximal solution; Hardy inequality; existence},
language = {eng},
number = {3},
pages = {303-330},
publisher = {Elsevier},
title = {Nonlinear problems with solutions exhibiting a free boundary on the boundary},
url = {http://eudml.org/doc/78658},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Dávila, Juan
AU - Montenegro, Marcelo
TI - Nonlinear problems with solutions exhibiting a free boundary on the boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 3
SP - 303
EP - 330
LA - eng
KW - nonlinear boundary condition; maximal solution; Hardy inequality; existence
UR - http://eudml.org/doc/78658
ER -
References
top- [1] Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev.18 (1976) 620-709. Zbl0345.47044MR415432
- [2] Brezis H., Vazquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid10 (1997) 443-469. Zbl0894.35038MR1605678
- [3] Bryan K., Vogelius M., Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling, Quart. Appl. Math.60 (2002) 675-694. Zbl1030.35070MR1939006
- [4] Dávila J., Montenegro M., Positive versus free boundary solutions to a singular equation, J. Anal. Math.90 (2003) 303-335. Zbl1173.35743MR2001074
- [5] Fila M., Guo J.S., Complete blow-up and incomplete quenching for the heat equation with a nonlinear boundary condition, Nonlinear Anal.48 (2002) 995-1002. Zbl0994.35066MR1880259
- [6] Fila M., Levine H.A., Quenching on the boundary, Nonlinear Anal.21 (1993) 795-802. Zbl0809.35043MR1246508
- [7] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [8] Levine H.A., Lieberman G.M., Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions, J. Reine Angew. Math.345 (1983) 23-38. Zbl0519.35041MR717884
- [9] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988) 1203-1219. Zbl0675.35042MR969499
- [10] Lions J.L., Magenes E., Problemi ai limiti non omogenei. V, Ann. Scuola Norm Sup. Pisa16 (1962) 1-44. Zbl0115.31401MR146527
- [11] K. Medville, M. Vogelius, Blow up behaviour of planar harmonic functions satisfying a certain exponential Neumann boundary condition, preprint. Zbl1130.35067MR2178221
- [12] Phillips D., A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J.32 (1983) 1-17. Zbl0545.35013MR684751
- [13] Santosa F., Vogelius M., Xu J.-M., An effective nonlinear boundary condition for a corroding surface. Identification of the damage based on steady state electric data, Z. Angew. Math. Phys.49 (1998) 656-679. Zbl0908.35137MR1639381
- [14] Vogelius M., Xu J.-M., A nonlinear elliptic boundary value problem related to corrosion modeling, Quart. Appl. Math.56 (1998) 479-505. Zbl0954.35067MR1637048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.