On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 5, page 521-541
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBarles, Guy, and Da Lio, Francesca. "On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions." Annales de l'I.H.P. Analyse non linéaire 22.5 (2005): 521-541. <http://eudml.org/doc/78667>.
@article{Barles2005,
author = {Barles, Guy, Da Lio, Francesca},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {fully nonlinear elliptic equation},
language = {eng},
number = {5},
pages = {521-541},
publisher = {Elsevier},
title = {On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions},
url = {http://eudml.org/doc/78667},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Barles, Guy
AU - Da Lio, Francesca
TI - On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 5
SP - 521
EP - 541
LA - eng
KW - fully nonlinear elliptic equation
UR - http://eudml.org/doc/78667
ER -
References
top- [1] Alvarez O., Bardi M., Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J. Control Optim.40 (4) (2001/02) 1159-1188. Zbl1017.49028MR1882729
- [2] Alvarez O., Bardi M., Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result, Arch. Rational Mech. Anal.170 (1) (2003) 17-61. Zbl1032.35103MR2012646
- [3] Arisawa M., Ergodic problem for the Hamilton–Jacobi–Bellman equation. I. Existence of the ergodic attractor, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (4) (1997) 415-438. Zbl0892.49015MR1464529
- [4] Arisawa M., Ergodic problem for the Hamilton–Jacobi–Bellman equation. II, Ann. Inst. Poincaré Anal. Non Linéaire15 (1) (1998) 1-24. Zbl0903.49018MR1614615
- [5] Arisawa M., Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Linéaire20 (2) (2003) 293-332. Zbl1139.35311MR1961518
- [6] Arisawa M., Lions P.-L., On ergodic stochastic control, Comm. Partial Differential Equations23 (11–12) (1998) 2187-2217. Zbl1126.93434MR1662180
- [7] Bagagiolo F., Bardi M., Capuzzo Dolcetta I., A viscosity solutions approach to some asymptotic problems in optimal control, in: Partial Differential Equation Methods in Control and Shape Analysis (Pisa), Lecture Notes in Pure and Appl. Math., vol. 188, Dekker, New York, 1997, pp. 29-39. Zbl0881.35013MR1452882
- [8] Bardi M., Da Lio F., On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel)73 (4) (1999) 276-285. Zbl0939.35038MR1710100
- [9] Barles G., Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations154 (1999) 191-224. Zbl0924.35051MR1685618
- [10] G. Barles, F. Da Lio, Local estimates for viscosity solutions of Neumann-type boundary value problems, preprint. Zbl1147.35312MR2228697
- [11] Barles G., Lions P.L., Remarques sur les problèmes de riflexion obliques, C. R. Acad. Sci. Paris, Ser. I320 (1995) 69-74. Zbl0831.60068MR1320834
- [12] G. Barles, M. Ramaswamy, Sufficient structure conditions for uniqueness of viscosity solutions of semilinear and quasilinear equations, NoDEA, in press. Zbl1146.35326MR2199386
- [13] Barles G., Souganidis P.E., On the large time behaviour of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal.31 (4) (2000) 925-939. Zbl0960.70015MR1752423
- [14] Barles G., Souganidis P.E., Space–time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal.32 (6) (2001) 1311-1323. Zbl0986.35047MR1856250
- [15] Bensoussan A., Perturbation methods in optimal control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, Wiley, Chichester, 1988, Translated from the French by C. Tomson. Zbl0648.49001MR949208
- [16] Bensoussan A., Frehse J., On Bellman equations of ergodic control in , J. Reine Angew. Math.429 (1992) 125-160. Zbl0779.35038MR1173120
- [17] Bensoussan A., Frehse J., Ergodic control Bellman equation with Neumann boundary conditions, in: Stochastic Theory and Control (Lawrence, KS, 2001), Lecture Notes in Control and Inform. Sci., vol. 280, Springer, Berlin, 2002, pp. 59-71. Zbl1050.93075MR1931643
- [18] Capuzzo Dolcetta I., Lions P.L., Hamilton–Jacobi equations with state constraints, Trans. Amer. Math. Soc.318 (2) (1990) 643-683. Zbl0702.49019MR951880
- [19] Concordel M.C., Periodic homogenization of Hamilton–Jacobi equations: additive eigenvalues and variational formula, Indiana Univ. Math. J.45 (4) (1996) 1095-1117. Zbl0871.49025MR1444479
- [20] Concordel M.C., Periodic homogenization of Hamilton–Jacobi equations: II: Eikonal equations, Proc. Roy. Soc. Edinburgh Sect. A127 (4) (1997) 665-689. Zbl0883.35010MR1465414
- [21] Crandal M.G., Ishii H., Lions P.L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
- [22] Evans L.C., The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A111 (3–4) (1989) 359-375. Zbl0679.35001MR1007533
- [23] Evans L.C., Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A120 (3–4) (1992) 245-265. Zbl0796.35011MR1159184
- [24] Evans L.C., Gomes D., Effective Hamiltonians and averaging for Hamiltonian dynamics. I., Arch. Rational Mech. Anal.157 (1) (2001) 1-33. Zbl0986.37056MR1822413
- [25] Fathi A., Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Sér. I Math.324 (1997) 1043-1046. Zbl0885.58022MR1451248
- [26] Fathi A., Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris, Sér. I Math.325 (6) (1997) 649-652. Zbl0943.37031MR1473840
- [27] Fathi A., Sur la convergence du semi-groupe de Lax–Oleinik, C. R. Acad. Sci. Paris, Sér. I Math.327 (3) (1998) 267-270. Zbl1052.37514MR1650261
- [28] Ishii H., Almost periodic homogenization of Hamilton–Jacobi equations, in: International Conference on Differential Equations, vols. 1, 2 (Berlin, 1999), World Sci., River Edge, NJ, 2000, pp. 600-605. Zbl0969.35018MR1870203
- [29] Ishii H., Perron's method for Hamilton–Jacobi equations, Duke Math. J.55 (1987) 369-384. Zbl0697.35030MR894587
- [30] Lasry J.M., Lions P.L., Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann.283 (1989) 583-630. Zbl0688.49026MR990591
- [31] Lions P.-L., Neumann type boundary conditions for Hamilton–Jacobi equations, Duke Math. J.52 (4) (1985) 793-820. Zbl0599.35025MR816386
- [32] P.-L. Lions, G. Papanicolaou, S.R.S Varadhan, unpublished preprint.
- [33] Lions P.L., Sznitman A.S., Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math.XXXVII (1984) 511-537. Zbl0598.60060MR745330
- [34] Namah G., Roquejoffre J.-M., Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations, Comm. Partial Differential Equations24 (5–6) (1999) 883-893. Zbl0924.35028MR1680905
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.