# Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem

ESAIM: Control, Optimisation and Calculus of Variations (2012)

- Volume: 18, Issue: 4, page 954-968
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topMarchi, Claudio. "Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem." ESAIM: Control, Optimisation and Calculus of Variations 18.4 (2012): 954-968. <http://eudml.org/doc/272878>.

@article{Marchi2012,

abstract = {This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.},

author = {Marchi, Claudio},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {continuous dependence estimates; parabolic Hamilton-Jacobi equations; viscosity solutions; ergodic problems; differential games; singular perturbations},

language = {eng},

number = {4},

pages = {954-968},

publisher = {EDP-Sciences},

title = {Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem},

url = {http://eudml.org/doc/272878},

volume = {18},

year = {2012},

}

TY - JOUR

AU - Marchi, Claudio

TI - Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2012

PB - EDP-Sciences

VL - 18

IS - 4

SP - 954

EP - 968

AB - This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.

LA - eng

KW - continuous dependence estimates; parabolic Hamilton-Jacobi equations; viscosity solutions; ergodic problems; differential games; singular perturbations

UR - http://eudml.org/doc/272878

ER -

## References

top- [1] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs : a general convergence result. Arch. Rational Mech. Anal.170 (2003) 17–61. Zbl1032.35103MR2012646
- [2] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equation. Mem. Amer. Math. Soc. 204 (2010). Zbl1209.35001MR2640736
- [3] M. Arisawa and P.L. Lions, On ergodic stochastic control. Comm. Partial Differential Equations23 (1998) 2187–2217. Zbl1126.93434MR1662180
- [4] V.I. Arnold and A. Avez, Problèmes ergodiques de la mècanique classique. Gauthiers-Villars, Paris (1967). Zbl0149.21704MR209436
- [5] G. Barles and F. Da Lio, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005) 521–541. Zbl1130.35047MR2171989
- [6] G. Barles, F. Da Lio, P.L. Lions and P.E. Souganidis, Ergodic problems and periodic homogenization for fully nonlinear equations in half-space type domains with Neumann boundary conditions. Indiana Univ. Math. J.57 (2008) 2355–2375. Zbl1173.35013MR2463972
- [7] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations. Math. Comp.76 (2007) 1861–1893. Zbl1123.65096MR2336272
- [8] G. Barles, O. Ley and H. Mitake, Short time uniqueness results for solutions of nonlocal and non-monotone geometric equations. arXiv:1005.5597. Zbl1246.35013MR2874962
- [9] G. Barles and P.E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations. SIAM J. Math. Anal.32 (2001) 1311–1326. Zbl0986.35047MR1856250
- [10] A. Bensoussan, Perturbation Methods in Optimal Control. Wiley/Gauthiers-Villars, Chichester (1988). Zbl0648.49001MR949208
- [11] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for periodic Structures. North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
- [12] I.H. Biswas, E.R. Jakobsen and K.H. Karlsen, Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim.62 (2010) 47–80. Zbl1197.49028MR2653895
- [13] M. Bourgoing, C1, β regularity of viscosity solutions via a continuous-dependence result. Adv. Differential Equations9 (2004) 447–480. Zbl1107.35032MR2100635
- [14] L. Caffarelli, P. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Comm. Pure Appl. Math.58 (2005) 319–361. Zbl1063.35025MR2116617
- [15] B. Cockburn, G. Gripenberg and S.-O. Londen, Continuous dependence on the nonlinearity of viscosity solutions of parabolic equations. J. Differential Equations170 (2001) 180–187. Zbl0973.35107MR1813105
- [16] I.P. Cornfeld, S.V. Fomin and Y.G. Sinai, Ergodic theory. Springer-Verlag, Berlin (1982). Zbl0493.28007MR832433
- [17] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. Zbl0755.35015MR1118699
- [18] M.G. Crandall, M. Kocan and A. Świech, Lp-theory for fully nonlinear uniformly parabolic equations. Comm. Partial Differential Equations25 (2000) 1997–2053. Zbl0973.35097MR1789919
- [19] H. Dong and N.V. Krylov, The rate of convergence of finite-difference approximations for parabolic Bellman equations with Lipschitz coefficients in cylindrical domains. Appl. Math. Optim.56 (2007) 37–66. Zbl1127.65068MR2334605
- [20] A. Dontchev and T. Zolezzi, Well-posed Optimization Problems, Lecture Notes in Math. 1543. Berlin (1993). Zbl0797.49001MR1239439
- [21] L. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. Roy. Soc. Edinb. Sect. A120 (1992) 245–265. Zbl0796.35011MR1159184
- [22] W.H. Fleming and P.E. Souganidis, On the existence of value functions of two-players zero-sum stochastic differential games. Indiana Univ. Math. J.38 (1989) 293–314. Zbl0686.90049MR997385
- [23] G. Gripenberg, Estimates for viscosity solutions of parabolic equations with Dirichlet boundary conditions. Proc. Am. Math. Soc.130 (2002) 3651–3660. Zbl1090.35097MR1920045
- [24] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Comm. Pure Appl. Math.42 (1989) 15–45. Zbl0645.35025MR973743
- [25] H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations83 (1990) 26–78. Zbl0708.35031MR1031377
- [26] E.R. Jakobsen and C.A. Georgelin, Continuous dependence results for non-linear Neumann type boundary value problems. J. Differential Equations245 (2008) 2368–2396. Zbl1155.35043MR2455769
- [27] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differential Equations183 (2002) 497–525. Zbl1086.35061MR1919788
- [28] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations. Electron. J. Differential Equations39 (2002) 1–10. Zbl1010.35050MR1907715
- [29] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differential Equations212 (2005) 278–318. Zbl1082.45008MR2129093
- [30] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). Zbl0801.35001MR1329546
- [31] P.V. Kokotović, H.K. Khalil and J. O’Reilly, Singular perturbation methods in control : analysis and design. Academic Press, London (1986). Zbl0646.93001
- [32] P.L. Lions and P. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. Henti Poincaré, Anal. Non Linéaire 22 (2005) 667–677. Zbl1135.35092MR2171996
- [33] B. Simon, Functional integration and quantum physics. Academic Press, New York (1979). Zbl0434.28013MR544188
- [34] P.E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations56 (1985) 345–390. Zbl0506.35020MR780496
- [35] L. Wang, On the regularity theory of fully nonlinear parabolic equations : I. Comm. Pure Appl. Math.45 (1992) 27–76. Zbl0832.35025MR1135923
- [36] L. Wang, On the regularity theory of fully nonlinear parabolic equations : II. Comm. Pure Appl. Math.45 (1992) 141–178. Zbl0774.35042MR1139064

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.