Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem

Claudio Marchi

ESAIM: Control, Optimisation and Calculus of Variations (2012)

  • Volume: 18, Issue: 4, page 954-968
  • ISSN: 1292-8119

Abstract

top
This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space  [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.

How to cite

top

Marchi, Claudio. "Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem." ESAIM: Control, Optimisation and Calculus of Variations 18.4 (2012): 954-968. <http://eudml.org/doc/272878>.

@article{Marchi2012,
abstract = {This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space  [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.},
author = {Marchi, Claudio},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {continuous dependence estimates; parabolic Hamilton-Jacobi equations; viscosity solutions; ergodic problems; differential games; singular perturbations},
language = {eng},
number = {4},
pages = {954-968},
publisher = {EDP-Sciences},
title = {Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem},
url = {http://eudml.org/doc/272878},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Marchi, Claudio
TI - Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2012
PB - EDP-Sciences
VL - 18
IS - 4
SP - 954
EP - 968
AB - This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space  [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.
LA - eng
KW - continuous dependence estimates; parabolic Hamilton-Jacobi equations; viscosity solutions; ergodic problems; differential games; singular perturbations
UR - http://eudml.org/doc/272878
ER -

References

top
  1. [1] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs : a general convergence result. Arch. Rational Mech. Anal.170 (2003) 17–61. Zbl1032.35103MR2012646
  2. [2] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equation. Mem. Amer. Math. Soc. 204 (2010). Zbl1209.35001MR2640736
  3. [3] M. Arisawa and P.L. Lions, On ergodic stochastic control. Comm. Partial Differential Equations23 (1998) 2187–2217. Zbl1126.93434MR1662180
  4. [4] V.I. Arnold and A. Avez, Problèmes ergodiques de la mècanique classique. Gauthiers-Villars, Paris (1967). Zbl0149.21704MR209436
  5. [5] G. Barles and F. Da Lio, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005) 521–541. Zbl1130.35047MR2171989
  6. [6] G. Barles, F. Da Lio, P.L. Lions and P.E. Souganidis, Ergodic problems and periodic homogenization for fully nonlinear equations in half-space type domains with Neumann boundary conditions. Indiana Univ. Math. J.57 (2008) 2355–2375. Zbl1173.35013MR2463972
  7. [7] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations. Math. Comp.76 (2007) 1861–1893. Zbl1123.65096MR2336272
  8. [8] G. Barles, O. Ley and H. Mitake, Short time uniqueness results for solutions of nonlocal and non-monotone geometric equations. arXiv:1005.5597. Zbl1246.35013MR2874962
  9. [9] G. Barles and P.E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations. SIAM J. Math. Anal.32 (2001) 1311–1326. Zbl0986.35047MR1856250
  10. [10] A. Bensoussan, Perturbation Methods in Optimal Control. Wiley/Gauthiers-Villars, Chichester (1988). Zbl0648.49001MR949208
  11. [11] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for periodic Structures. North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
  12. [12] I.H. Biswas, E.R. Jakobsen and K.H. Karlsen, Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim.62 (2010) 47–80. Zbl1197.49028MR2653895
  13. [13] M. Bourgoing, C1, β regularity of viscosity solutions via a continuous-dependence result. Adv. Differential Equations9 (2004) 447–480. Zbl1107.35032MR2100635
  14. [14] L. Caffarelli, P. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Comm. Pure Appl. Math.58 (2005) 319–361. Zbl1063.35025MR2116617
  15. [15] B. Cockburn, G. Gripenberg and S.-O. Londen, Continuous dependence on the nonlinearity of viscosity solutions of parabolic equations. J. Differential Equations170 (2001) 180–187. Zbl0973.35107MR1813105
  16. [16] I.P. Cornfeld, S.V. Fomin and Y.G. Sinai, Ergodic theory. Springer-Verlag, Berlin (1982). Zbl0493.28007MR832433
  17. [17] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. Zbl0755.35015MR1118699
  18. [18] M.G. Crandall, M. Kocan and A. Świech, Lp-theory for fully nonlinear uniformly parabolic equations. Comm. Partial Differential Equations25 (2000) 1997–2053. Zbl0973.35097MR1789919
  19. [19] H. Dong and N.V. Krylov, The rate of convergence of finite-difference approximations for parabolic Bellman equations with Lipschitz coefficients in cylindrical domains. Appl. Math. Optim.56 (2007) 37–66. Zbl1127.65068MR2334605
  20. [20] A. Dontchev and T. Zolezzi, Well-posed Optimization Problems, Lecture Notes in Math. 1543. Berlin (1993). Zbl0797.49001MR1239439
  21. [21] L. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. Roy. Soc. Edinb. Sect. A120 (1992) 245–265. Zbl0796.35011MR1159184
  22. [22] W.H. Fleming and P.E. Souganidis, On the existence of value functions of two-players zero-sum stochastic differential games. Indiana Univ. Math. J.38 (1989) 293–314. Zbl0686.90049MR997385
  23. [23] G. Gripenberg, Estimates for viscosity solutions of parabolic equations with Dirichlet boundary conditions. Proc. Am. Math. Soc.130 (2002) 3651–3660. Zbl1090.35097MR1920045
  24. [24] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Comm. Pure Appl. Math.42 (1989) 15–45. Zbl0645.35025MR973743
  25. [25] H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations83 (1990) 26–78. Zbl0708.35031MR1031377
  26. [26] E.R. Jakobsen and C.A. Georgelin, Continuous dependence results for non-linear Neumann type boundary value problems. J. Differential Equations245 (2008) 2368–2396. Zbl1155.35043MR2455769
  27. [27] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differential Equations183 (2002) 497–525. Zbl1086.35061MR1919788
  28. [28] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations. Electron. J. Differential Equations39 (2002) 1–10. Zbl1010.35050MR1907715
  29. [29] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differential Equations212 (2005) 278–318. Zbl1082.45008MR2129093
  30. [30] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). Zbl0801.35001MR1329546
  31. [31] P.V. Kokotović, H.K. Khalil and J. O’Reilly, Singular perturbation methods in control : analysis and design. Academic Press, London (1986). Zbl0646.93001
  32. [32] P.L. Lions and P. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. Henti Poincaré, Anal. Non Linéaire 22 (2005) 667–677. Zbl1135.35092MR2171996
  33. [33] B. Simon, Functional integration and quantum physics. Academic Press, New York (1979). Zbl0434.28013MR544188
  34. [34] P.E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations56 (1985) 345–390. Zbl0506.35020MR780496
  35. [35] L. Wang, On the regularity theory of fully nonlinear parabolic equations : I. Comm. Pure Appl. Math.45 (1992) 27–76. Zbl0832.35025MR1135923
  36. [36] L. Wang, On the regularity theory of fully nonlinear parabolic equations : II. Comm. Pure Appl. Math.45 (1992) 141–178. Zbl0774.35042MR1139064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.