Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications
Pierre-Louis Lions; Panagiotis E. Souganidis
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 5, page 667-677
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLions, Pierre-Louis, and Souganidis, Panagiotis E.. "Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications." Annales de l'I.H.P. Analyse non linéaire 22.5 (2005): 667-677. <http://eudml.org/doc/78674>.
@article{Lions2005,
author = {Lions, Pierre-Louis, Souganidis, Panagiotis E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Gross Laplacian; Ornstein-Uhlenbeck operator; elliptic operators with infinitely many variables},
language = {eng},
number = {5},
pages = {667-677},
publisher = {Elsevier},
title = {Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications},
url = {http://eudml.org/doc/78674},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Lions, Pierre-Louis
AU - Souganidis, Panagiotis E.
TI - Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 5
SP - 667
EP - 677
LA - eng
KW - Gross Laplacian; Ornstein-Uhlenbeck operator; elliptic operators with infinitely many variables
UR - http://eudml.org/doc/78674
ER -
References
top- [1] Arisawa M., Quasi-periodic homogenizations for second-order Hamilton–Jacobi–Bellman equations, Adv. Math. Sci. Appl.11 (2001) 465-480. Zbl1014.49018MR1842387
- [2] Arisawa M., Lions P.-L., On ergodic stochastic control, Comm. Partial Differential Equations23 (1998) 2187-2217. Zbl1126.93434MR1662180
- [3] Barles G., A weak Bernstein method for fully nonlinear elliptic equations, Differential Integral Equations4 (1991) 241-262. Zbl0733.35014MR1081182
- [4] Bensoussan A., Blakenship G., Controlled diffusions in a random medium, Stochastics24 (1988) 87-120. Zbl0666.93131MR972975
- [5] Bhattacharya K., Cracium B., Homogenization of a Hamilton–Jacobi equation associated with the geometric motion of an interface, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 773-805. Zbl1043.35028MR2006202
- [6] Bourgeat A., Piatniski A., Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 153-165. Zbl1058.35023MR2044813
- [7] Cabre X., Caffarelli L.A., Fully nonlinear elliptic partial differential equations, Amer. Math. Soc., 1997. Zbl0834.35002
- [8] Caffarelli L.A., A note on nonlinear homogenization, Comm. Pure Appl. Math.52 (1999) 829-838. Zbl0933.35022MR1682808
- [9] L.A. Caffarelli, P.-L., Lions, P.E. Souganidis, in preparation.
- [10] Caffarelli L.A., Souganidis P.E., Wang L., Stochastic homogenization for fully nonlinear, second-order partial differential equations, Comm. Pure Appl. Math.LVII (2005) 319-361. Zbl1063.35025MR2116617
- [11] Castell F., Homogenization of random semilinear PDEs, Probab. Theory Related Fields121 (2001) 492-524. Zbl0989.35022MR1872426
- [12] Cocordel M., Periodic homogenization of Hamilton–Jacobi equations: additive eigenvalue and variational formulas, Indiana Univ. Math. J.45 (1996) 1095-1117. Zbl0871.49025MR1444479
- [13] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
- [14] Dal Maso G., Modica L., Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math.368 (1986) 28-42. Zbl0582.60034MR850613
- [15] N. Dirr, A. Yip, personal communication.
- [16] E W., A class of homogenization problems in the calculus of variations, Comm. Pure Appl. Math.XLIV (1991) 733-759. Zbl0773.49007MR1115092
- [17] Evans L.C., Periodic homogenization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A120 (1992) 245-265. Zbl0796.35011MR1159184
- [18] Evans L.C., The perturbed test function method for viscosity solutions of nonlinear pde, Proc. Roy. Soc. Edinburgh Sect. A111 (1989) 359-375. Zbl0679.35001MR1007533
- [19] Freidlin M., On factorization of a non-negative definite matrix, Probab. Theory Appl.13 (1968) 375-378, (in Russian). Zbl0169.20603
- [20] Ishii H., Almost periodic homogenization of Hamilton–Jacobi equations, in: Int. Conf. on Diff. Eqs., vol. 1, Berlin 1999, World Scientific, River Edge, NJ, 2000, pp. 600-605. Zbl0969.35018MR1870203
- [21] Ishii H., Lions P.-L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, JDE83 (1990) 26-78. Zbl0708.35031MR1031377
- [22] Jikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1991. Zbl0838.35001MR1329546
- [23] H. Kosynga, F. Rezankhanlou, S.R.S. Varadhan, Stochastic homogenization of Hamilton–Jacobi–Bellman equations, Preprint.
- [24] Kozlov S.M., The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys40 (1985) 73-145. Zbl0615.60063MR786087
- [25] Lions P.-L., Resolution de problemes elliptic quasilineaires, Arch. Rational Mech. Anal.74 (1980) 335-353. Zbl0449.35036MR588033
- [26] Lions P.-L., Souganidis P.E., Correctors for the homogenization of Hamilton–Jacobi equations in a stationary ergodic setting, Comm. Pure Appl. Math.LVI (2003) 1501-1524. Zbl1050.35012MR1988897
- [27] Lions P.-L., Souganidis P.E., Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media, Comm. Partial Differential Equations30 (2005) 335-375. Zbl1065.35047
- [28] P.-L. Lions, P.E. Souganidis, in preparation.
- [29] P.-L. Lions, G. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton–Jacobi equations, Preprint.
- [30] Majda A., Souganidis P.E., Large scale front dynamics for turbulent reaction–diffusion equations with separated velocity scales, Nonlinearity7 (1994) 1-30. Zbl0839.76093MR1260130
- [31] S. Müller, private communication.
- [32] Oleinik A., Alcuni visultati sulle equazioni lineari e quasilineri ellitico-paraboliche a derivate parziali del second ordine, Rend. Classe Sci. Fis. Mat., Nat. Acad. Naz. Lincei, Sci. 840 (1966) 774-784. Zbl0173.12906
- [33] Papanicolaou G., Varadhan S.R.S., Boundary value problems with rapidly oscillating random coefficients, in: Fritz J., Lebaritz J.L., Szasz D. (Eds.), Rigorous Results in Statistical Mechanics and Quantum Field Theory, Proc. Colloq. on Random Fields, Colloquia Mathematica Societ. Janos Bolyai, vol. 10, 1979, pp. 835-873. Zbl0499.60059MR712714
- [34] Papanicolaou G., Varadhan S.R.S., Diffusion with random coefficients, in: Krishnaiah P.R. (Ed.), Essays in Statistics and Probability, North-Holland, 1981. Zbl0486.60076MR659505
- [35] Rezankhanlou F., Tarver J., Homogenization for stochastic Hamilton–Jacobi equations, Arch. Rational Mech. Anal.151 (2000) 277-309. Zbl0954.35022MR1756906
- [36] Serrin J., The problem of Dirichlet of quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A264 (1969) 413-469. Zbl0181.38003MR282058
- [37] Souganidis P.E., Front propagation: Theory and applications, in: CIME Course on “Viscosity Solutions and their Applications”, Lecture Notes in Math., vol. 1660, Springer, 1997. Zbl0882.35016
- [38] Souganidis P.E., Recent developments in the theory of front propagation and its applications, in: Sabiclussi G. (Ed.), Modern Methods in Scientific Computing and Applications, NATO Science Ser. II, vol. 75, Kluwer Academic, 2002. Zbl1052.35097MR2004361
- [39] Souganidis P.E., Stochastic homogenization of Hamilton–Jacobi equations and some applications, Asymptotic Anal.20 (1999) 1-11. Zbl0935.35008MR1697831
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.