Markov structures and decay of correlations for non-uniformly expanding dynamical systems

José F. Alves; Stefano Luzzatto; Vilton Pinheiro

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 6, page 817-839
  • ISSN: 0294-1449

How to cite

top

Alves, José F., Luzzatto, Stefano, and Pinheiro, Vilton. "Markov structures and decay of correlations for non-uniformly expanding dynamical systems." Annales de l'I.H.P. Analyse non linéaire 22.6 (2005): 817-839. <http://eudml.org/doc/78680>.

@article{Alves2005,
author = {Alves, José F., Luzzatto, Stefano, Pinheiro, Vilton},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {817-839},
publisher = {Elsevier},
title = {Markov structures and decay of correlations for non-uniformly expanding dynamical systems},
url = {http://eudml.org/doc/78680},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Alves, José F.
AU - Luzzatto, Stefano
AU - Pinheiro, Vilton
TI - Markov structures and decay of correlations for non-uniformly expanding dynamical systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 6
SP - 817
EP - 839
LA - eng
UR - http://eudml.org/doc/78680
ER -

References

top
  1. [1] Alves J.F., SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. École Norm. Sup.33 (4) (2000) 1-32. Zbl0955.37012MR1743717
  2. [2] Alves J.F., Araújo V., Random perturbations of nonuniformly expanding maps, Astérisque286 (2003) 25-62. Zbl1043.37016MR2052296
  3. [3] Alves J.F., Bonatti C., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math.140 (2000) 351-398. Zbl0962.37012MR1757000
  4. [4] Alves J.F., Luzzatto S., Pinheiro V., Lyapunov exponent and rates of mixing for one-dimensional maps, Ergodic Theory Dynam. Systems24 (2004) 637-657. Zbl1049.37025MR2060991
  5. [5] Alves J.F., Viana M., Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems22 (2002) 1-32. Zbl1067.37034MR1889563
  6. [6] Adler R., Weiss B., Proc. Entropy, a complete metric invariant for automorphisms of the torus, Nat. Acad. Sci. USA57 (1967) 1573-1576. Zbl0177.08002MR212156
  7. [7] Adler R., Weiss B., Similarity of Automorphisms of the Torus, Mem. Amer. Math. Soc., vol. 98, Amer. Math. Soc., Providence, RI, 1970. Zbl0195.06104MR257315
  8. [8] V. Baladi, M. Benedicks, V. Maume-Deschamps, Almost sure rate of mixing for i.i.d unimodal maps, Ann. Sci. Écol. Norm. Sup. (4) (2002). Zbl1037.37003MR1886006
  9. [9] Bruin H., Luzzatto S., van Strien S., Rates of decay of correlations in one-dimensional dynamics, Ann. Sci. Écol. Norm. Sup.36 (2003) 621-646. Zbl1039.37021MR2013929
  10. [10] Bowen R., Ruelle D., The ergodic theory of Axiom A flows, Invent. Math.29 (1975) 181-202. Zbl0311.58010MR380889
  11. [11] Bowen R., Markov partitions for Axiom diffeomorphisms, Amer. J. Math.92 (1970) 725-747. Zbl0208.25901MR277003
  12. [12] Bowen R., Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms, Lecture Notes in Math., vol. 92, Springer, 1975. Zbl0308.28010MR442989
  13. [13] Bressaud X., Subshifts on an infinite alphabet, Ergodic Theory Dynam. Systems19 (5) (1999) 1175-1200. Zbl0958.37003MR1721615
  14. [14] Bunimovich L.A., Sinaĭ Ya.G., Chernov N.I., Statistical properties of two-dimensional hyperbolic billiards, Russian Math. Surveys46 (4) (1991) 47-106. Zbl0780.58029MR1138952
  15. [15] Buzzi J., Markov extensions for multi-dimensional dynamical systems, Israel J. Math.112 (1999) 357-380. Zbl0988.37012MR1714974
  16. [16] Buzzi J., Maume-Deschamps V., Decay of correlations for piecewise invertible maps in higher dimensions, Israel J. Math.131 (2002) 203-220. Zbl1014.37017MR1942309
  17. [17] J. Buzzi, V. Maume-Deschamps, Decay of correlations on towers with non-Hólder Jacobian and non-exponential return time, Preprint, 2002. Zbl1075.37002MR2129364
  18. [18] Buzzi J., Sester O., Tsujii M., Weakly expanding skew-products of quadratic maps, Ergodic Theory Dynam. Systems24 (2004) 385-405. Zbl1037.37014MR2018605
  19. [19] M. Holland, Slowly mixing systems and intermittency maps, Ergodic Theory Dynam. Systems, in press. Zbl1073.37044MR2122916
  20. [20] Hu H., Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic Theory Dynam. Systems24 (2004) 495-524. Zbl1071.37026MR2054191
  21. [21] Krüger T., Troubetzkoy S., Markov partitions and shadowing for non-uniformly hyperbolic systems with singularitie, Ergodic Theory Dynam. Systems12 (3) (1992) 487-508. Zbl0756.58038MR1182660
  22. [22] Liverani C., Saussol B., Vaienti S., A probabilistic approach to intermittancy, Ergodic Theory Dynam. Systems19 (1999) 671-685. Zbl0988.37035MR1695915
  23. [23] Maume-Deschamps V., Correlation decay for Markov maps on a countable state space, Ergodic Theory Dynam. Systems21 (2001) 165-196. Zbl0979.37007MR1826665
  24. [24] Pollicott M., Yuri M., Statistical properties of maps with indifferent periodic points, Commun. Math. Phys.217 (2001) 503-520. Zbl0996.37030MR1822105
  25. [25] Sarig O., Thermodynamical formalism for countable Markov shifts, Ergodic Theory Dynam. Systems19 (1999) 1565-1593. Zbl0994.37005MR1738951
  26. [26] Sarig O., Subexponential decay of correlations, Invent. Math.150 (2002) 629-653. Zbl1042.37005MR1946554
  27. [27] Sinai Y., Markov partitions and U-diffeomorphisms, Funktsional Anal. i Prilozhen.32 (2) (1968) 70-80. Zbl0194.22602MR233038
  28. [28] Viana M., Multidimensional non-hyperbolic attractors, Publ. Math. IHES85 (1997) 63-96. Zbl1037.37016
  29. [29] Young L.-S., Statistical properties of dynamical systems with some hyperbolicity, Ann. Math.147 (1998) 585-650. Zbl0945.37009MR1637655
  30. [30] Young L.-S., Recurrence times and rates of mixing, Israel J. Math.110 (1999) 153-188. Zbl0983.37005MR1750438
  31. [31] Yuri M., On the speed of convergence to equilibrium states for multi-dimensional maps with indifferent fixed points, Nonlinearity15 (2002) 429-445. Zbl1001.37004MR1888859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.