Almost sure rates of mixing for i.i.d. unimodal maps

Viviane Baladi; Michael Benedicks; Véronique Maume-Deschamps

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 1, page 77-126
  • ISSN: 0012-9593

How to cite

top

Baladi, Viviane, Benedicks, Michael, and Maume-Deschamps, Véronique. "Almost sure rates of mixing for i.i.d. unimodal maps." Annales scientifiques de l'École Normale Supérieure 35.1 (2002): 77-126. <http://eudml.org/doc/82566>.

@article{Baladi2002,
author = {Baladi, Viviane, Benedicks, Michael, Maume-Deschamps, Véronique},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {mixing; ergodicity; unimodal interval maps; operational correlations; random countable Markov chains; independent identically distributed perturbations; skew products},
language = {eng},
number = {1},
pages = {77-126},
publisher = {Elsevier},
title = {Almost sure rates of mixing for i.i.d. unimodal maps},
url = {http://eudml.org/doc/82566},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Baladi, Viviane
AU - Benedicks, Michael
AU - Maume-Deschamps, Véronique
TI - Almost sure rates of mixing for i.i.d. unimodal maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 1
SP - 77
EP - 126
LA - eng
KW - mixing; ergodicity; unimodal interval maps; operational correlations; random countable Markov chains; independent identically distributed perturbations; skew products
UR - http://eudml.org/doc/82566
ER -

References

top
  1. [1] Alves J.F., SRB measures for nonhyperbolic systems with multidimensional expansion, Ann. Scient. Éc. Normale Sup. (4)33 (2000) 1-32. Zbl0955.37012MR1743717
  2. [2] Bahnmüller J., Pesin's entropy formula of expanding maps, Random Comput. Dynam.4 (1996) 99-108. Zbl0882.58037MR1402414
  3. [3] Baladi V., Kondah A., Schmitt B., Random correlations for small perturbations of expanding maps, Random Comput. Dynam.4 (1996) 179-204. Zbl0881.58054MR1402416
  4. [4] Baladi V., Viana M., Strong stochastic stability and rate of mixing for unimodal maps, Ann. Scient. Éc. Normale Sup. (4)29 (1996) 483-517. Zbl0868.58051MR1386223
  5. [5] Baladi V., Young L.-S., On the spectra of randomly perturbed expanding maps, Comm. Math. Phys.156 (1993) 355-385, see also Erratum, Comm. Math. Phys.166 (1994) 219–220. Zbl0809.60101MR1233850
  6. [6] Benedicks M., Carleson L., On iterations of 1−ax2 on (−1,1), Ann. of Math. (2)122 (1985) 1-25. Zbl0597.58016
  7. [7] Benedicks M., Carleson L., The dynamics of the Hénon map, Ann. of Math. (2)133 (1991) 73-169. Zbl0724.58042MR1087346
  8. [8] Benedicks M., Young L.-S., Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps, Erg. Theory Dyn. Syst.12 (1992) 13-37. Zbl0769.58051MR1162396
  9. [9] Blokh A.M., Lyubich M.Yu., Measurable dynamics of S-unimodal maps of the interval, Ann. Scient. Éc. Normale Sup.24 (1991) 545-573. Zbl0790.58024MR1132757
  10. [10] Bogenschütz T., Stochastic stability of equilibrium states, Random Comput. Dynam.4 (1996) 85-98. Zbl0881.58048MR1402413
  11. [11] Bougerol P., Lacroix J., Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, Boston, 1985. Zbl0572.60001MR886674
  12. [12] Bruin H., Luzzatto S., van Strien S., Decay of correlations in one-dimensional dynamics, Preprint, 1999. Zbl1039.37021
  13. [13] Buzzi J., SRB measures for random Lasota–Yorke maps, Trans. Amer. Math. Soc.352 (2000) 3289-3304. Zbl0956.37021MR1707698
  14. [14] Buzzi J., Exponential decay of correlations for random Lasota–Yorke maps, Comm. Math. Phys.208 (1999) 25-54. Zbl0974.37038MR1729876
  15. [15] Collet P., Ergodic properties of some unimodal mappings of the interval, Preprint 11, Institute Mittag Leffler, 1984 (unpublished). 
  16. [16] Collet P., A remark about uniform de-correlation prefactors, Preprint, 1999. 
  17. [17] Hennion H., Limit theorems for products of positive random matrices, Ann. Probab.25 (1997) 1545-1587. Zbl0903.60027MR1487428
  18. [18] Katok A., Kifer Y., Random perturbations of transformations of an interval, J. Anal. Math.47 (1986) 193-237. Zbl0616.60064MR874051
  19. [19] Khanin K., Kifer Y., Thermodynamic formalism for random transformations and statistical mechanics, in: Sinai's Moscow Seminar on Dynamical Systems, Math. Soc. Trans. Ser. 2, 171, American Mathematical Society, Providence, RI, 1996, pp. 107-140. Zbl0841.58017MR1359097
  20. [20] Kifer Y., Limit theorems for random transformations and processes in random environments, Trans. Amer. Math. Soc.350 (1998) 1481-1518. Zbl0995.37033MR1451607
  21. [21] Ledrappier F., Young L.-S., Entropy formula for random transformations, Probab. Theory Related Fields80 (1988) 217-240. Zbl0638.60054MR968818
  22. [22] Pollicott M., Yuri M., Dynamical Systems and Ergodic Theory, London Mathematical Society Student Texts, 40, Cambridge University Press, Cambridge, 1998. Zbl0897.28009MR1627681
  23. [23] Seneta E., Nonnegative Matrices and Markov Chains, Springer Series in Statistics, Springer-Verlag, New York, Berlin, 1981. Zbl0471.60001MR719544
  24. [24] Viana M., Multidimensional nonhyperbolic attractors, Inst. Hautes Etudes Sci. Publ. Math.85 (1997) 63-96. Zbl1037.37016MR1471866
  25. [25] Young L.-S., Statistical properties of systems with some hyperbolicity including certain billiards, Ann. of Math. (2)147 (1998) 585-650. Zbl0945.37009MR1637655
  26. [26] Young L.-S., Recurrence times and rates of mixing, Israel J. Math.110 (1999) 153-188. Zbl0983.37005MR1750438

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.