Concentration phenomena for solutions of superlinear elliptic problems

Riccardo Molle; Donato Passaseo

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 1, page 63-84
  • ISSN: 0294-1449

How to cite

top

Molle, Riccardo, and Passaseo, Donato. "Concentration phenomena for solutions of superlinear elliptic problems." Annales de l'I.H.P. Analyse non linéaire 23.1 (2006): 63-84. <http://eudml.org/doc/78684>.

@article{Molle2006,
author = {Molle, Riccardo, Passaseo, Donato},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variational methods; lack of compactness; concentration phenomena; blow up analysis; nearly starshaped domains},
language = {eng},
number = {1},
pages = {63-84},
publisher = {Elsevier},
title = {Concentration phenomena for solutions of superlinear elliptic problems},
url = {http://eudml.org/doc/78684},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Molle, Riccardo
AU - Passaseo, Donato
TI - Concentration phenomena for solutions of superlinear elliptic problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 1
SP - 63
EP - 84
LA - eng
KW - variational methods; lack of compactness; concentration phenomena; blow up analysis; nearly starshaped domains
UR - http://eudml.org/doc/78684
ER -

References

top
  1. [1] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (1988) 253-294. Zbl0649.35033MR929280
  2. [2] Bahri A., Li Y.Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var.3 (1) (1995) 67-93. Zbl0814.35032MR1384837
  3. [3] Berestycki H., Lions P.L., Nonlinear scalar fields equations – I. Existence of a ground-state, Arch. Rational Mech. Anal.82 (1983) 313-346. Zbl0533.35029MR695535
  4. [4] Brézis H., Elliptic equations with limiting Sobolev exponents – the impact of topology, Comm. Pure Appl. Math.39 (suppl.) (1986) S17-S39. Zbl0601.35043MR861481
  5. [5] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (4) (1983) 437-477. Zbl0541.35029MR709644
  6. [6] Coron J.M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math.299 (7) (1984) 209-212. Zbl0569.35032MR762722
  7. [7] Dancer E.N., Zhang K., Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal. Ser. A41 (5/6) (2000) 745-761. Zbl0960.35035MR1780642
  8. [8] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R N , in: Mathematical Analysis and Applications – Part A, Advances in Mathematics Supplementary Studies, vol. 7-A, Academic Press, 1981, pp. 369-402. Zbl0469.35052MR634248
  9. [9] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  10. [10] Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (2) (1984) 109-145. Zbl0541.49009MR778970
  11. [11] Littman W., Stampacchia G., Weinberger H.F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa17 (3) (1963) 43-77. Zbl0116.30302MR161019
  12. [12] R. Molle, D. Passaseo, Positive solutions for slightly super-critical elliptic equations in contractible domains, Preprint Dip. Matem. Univ. Lecce, n. 6, 2001. Zbl1010.35043MR1937113
  13. [13] Molle R., Passaseo D., Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains, C. R. Acad. Sci. Paris, Sér. I Math.335 (12) (2002) 1029-1032. Zbl1032.35071MR1955582
  14. [14] Molle R., Passaseo D., Positive solutions of slightly supercritical elliptic equations in symmetric domains, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (5) (2004) 639-656. Zbl1149.35353MR2086752
  15. [15] R. Molle, D. Passaseo, Multispike solutions of nonlinear elliptic equations with critical Sobolev exponent, Preprint del Dipartimento di Matematica dell'Università di Roma “Tor Vergata”, 2003. Zbl1221.35119
  16. [16] Molle R., Passaseo D., On the existence of positive solutions of slightly supercritical elliptic equations, Adv. Nonlinear Stud.3 (3) (2003) 301-326. Zbl1094.35051MR1989741
  17. [17] R. Molle, D. Passaseo, Nonlinear elliptic equations with large supercritical exponents, Preprint del Dipartimento di Matematica dell'Università di Roma “Tor Vergata”, 2003. Zbl1093.35022
  18. [18] Passaseo D., Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math.65 (2) (1989) 147-165. Zbl0701.35068MR1011429
  19. [19] Passaseo D., Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal.114 (1) (1993) 97-105. Zbl0793.35039MR1220984
  20. [20] Passaseo D., New nonexistence results for elliptic equations with supercritical nonlinearity, Differential Integral Equations8 (3) (1995) 577-586. Zbl0821.35056MR1306576
  21. [21] Passaseo D., Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J.92 (2) (1998) 429-457. Zbl0943.35034MR1612734
  22. [22] Pohožaev S.I., On the eigenfunctions of the equation Δ u + λ f u = 0 , Soviet Math. Dokl.6 (1965) 1408-1411. Zbl0141.30202MR192184
  23. [23] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1) (1990) 1-52. Zbl0786.35059MR1040954
  24. [24] Riesz F., Nagy B.Sz., Functional Analysis, Dover, New York, 1990. Zbl0732.47001MR1068530
  25. [25] Schaaf R., Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry, Adv. Differential Equations5 (10–12) (2000) 1201-1220. Zbl0989.35056MR1785673
  26. [26] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
  27. [27] Talenti G., Best constants in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.