Positive solutions of slightly supercritical elliptic equations in symmetric domains

Riccardo Molle; Donato Passaseo

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 5, page 639-656
  • ISSN: 0294-1449

How to cite

top

Molle, Riccardo, and Passaseo, Donato. "Positive solutions of slightly supercritical elliptic equations in symmetric domains." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 639-656. <http://eudml.org/doc/78632>.

@article{Molle2004,
author = {Molle, Riccardo, Passaseo, Donato},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Supercritical problems; Multi-spike solutions; Contractible domains},
language = {eng},
number = {5},
pages = {639-656},
publisher = {Elsevier},
title = {Positive solutions of slightly supercritical elliptic equations in symmetric domains},
url = {http://eudml.org/doc/78632},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Molle, Riccardo
AU - Passaseo, Donato
TI - Positive solutions of slightly supercritical elliptic equations in symmetric domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 639
EP - 656
LA - eng
KW - Supercritical problems; Multi-spike solutions; Contractible domains
UR - http://eudml.org/doc/78632
ER -

References

top
  1. [1] Atkinson F.V., Peletier L.A., Elliptic equations with nearly critical growth, J. Differential Equations70 (3) (1987) 349-365. Zbl0657.35058MR915493
  2. [2] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (1988) 253-294. Zbl0649.35033MR929280
  3. [3] Bahri A., Li Y.Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var.3 (1) (1995) 67-93. Zbl0814.35032MR1384837
  4. [4] Brezis H., Elliptic equations with limiting Sobolev exponents – The impact of topology, Comm. Pure Appl. Math.39 (S suppl.) (1986) S17-S39. Zbl0601.35043MR861481
  5. [5] Brezis H., Peletier L.A., Asymptotics for elliptic equations involving critical growth, in: Colombini, Modica, Spagnolo (Eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192. Zbl0685.35013MR1034005
  6. [6] Coron J.M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math.299 (7) (1984) 209-212. Zbl0569.35032MR762722
  7. [7] Dancer E.N., A note on an equation with critical exponent, Bull. London Math. Soc.20 (6) (1988) 600-602. Zbl0646.35027MR980763
  8. [8] Dancer E.N., Zhang K., Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Nonlinear Anal. Ser. A: TMA41 (5/6) (2000) 745-761. Zbl0960.35035MR1780642
  9. [9] Del Pino M., Felmer P., Musso M., Multipeak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations182 (2) (2002) 511-540. Zbl1014.35028MR1900333
  10. [10] Ding W.Y., Positive solutions of Δu+u(n+2)/(n−2)=0 on contractible domains, J. Partial Differential Equations2 (4) (1989) 83-88. Zbl0694.35067
  11. [11] Han Z.C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (2) (1991) 159-174. Zbl0729.35014MR1096602
  12. [12] Kazdan J., Warner F.W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math.28 (5) (1975) 567-597. Zbl0325.35038MR477445
  13. [13] Molle R., Passaseo D., Positive solutions for slightly super-critical elliptic equations in contractible domains, Preprint Dip. Matem. Univ. Lecce6 (2001), C. R. Acad. Sci. Paris Sér. I Math.335 (5) (2002) 459-462. Zbl1010.35043MR1937113
  14. [14] Molle R., Passaseo D., Nonlinear elliptic equations with critical Sobolev exponent in nearly starshaped domains, C. R. Acad. Sci. Paris Sér. I Math.335 (12) (2002) 1029-1032. Zbl1032.35071MR1955582
  15. [15] R. Molle, D. Passaseo, On the existence of positive solutions of slightly supercritical elliptic equations, preprint. Zbl1094.35051MR1989741
  16. [16] R. Molle, D. Passaseo, A finite dimensional reduction method for slightly supercritical elliptic problems, preprint. Zbl1133.35360MR2096946
  17. [17] Passaseo D., Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math.65 (2) (1989) 147-165. Zbl0701.35068MR1011429
  18. [18] Passaseo D., Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal.114 (1) (1993) 97-105. Zbl0793.35039MR1220984
  19. [19] Passaseo D., New nonexistence results for elliptic equations with supercritical nonlinearity, Differential Integral Equations8 (3) (1995) 577-586. Zbl0821.35056MR1306576
  20. [20] Passaseo D., Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J.92 (2) (1998) 429-457. Zbl0943.35034MR1612734
  21. [21] Pohožaev S.I., On the eigenfunctions of the equation Δu+λf(u)=0, Soviet. Math. Dokl.6 (1965) 1408-1411. 
  22. [22] Rey O., Sur un problème variationnel non compact: l'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math.308 (12) (1989) 349-352. Zbl0686.35047MR992090
  23. [23] Rey O., A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal.13 (10) (1989) 1241-1249. Zbl0702.35101MR1020729
  24. [24] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1) (1990) 1-52. Zbl0786.35059MR1040954
  25. [25] Rey O., The topological impact of critical points at infinity in a variational problem with lack of compactness: the dimension 3, Adv. Differential Equations4 (4) (1999) 581-616. Zbl0952.35051MR1693274
  26. [26] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908
  27. [27] Yan S., High-energy solutions for a nonlinear elliptic problem with slightly supercritical exponent, Nonlinear Anal. Ser. A: Theory Methods38 (4) (1999) 527-546. Zbl0956.35043MR1707876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.