On the topology of solenoidal attractors of the cylinder
Rodrigo Bamón; Jan Kiwi[1]; Juan Rivera-Letelier; Richard Urzúa
- [1] Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 2, page 209-236
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBamón, Rodrigo, et al. "On the topology of solenoidal attractors of the cylinder." Annales de l'I.H.P. Analyse non linéaire 23.2 (2006): 209-236. <http://eudml.org/doc/78690>.
@article{Bamón2006,
affiliation = {Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)},
author = {Bamón, Rodrigo, Kiwi, Jan, Rivera-Letelier, Juan, Urzúa, Richard},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {attractors; endomorphisms},
language = {eng},
number = {2},
pages = {209-236},
publisher = {Elsevier},
title = {On the topology of solenoidal attractors of the cylinder},
url = {http://eudml.org/doc/78690},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Bamón, Rodrigo
AU - Kiwi, Jan
AU - Rivera-Letelier, Juan
AU - Urzúa, Richard
TI - On the topology of solenoidal attractors of the cylinder
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 2
SP - 209
EP - 236
LA - eng
KW - attractors; endomorphisms
UR - http://eudml.org/doc/78690
ER -
References
top- [1] Bousch T., La condition de Walters, Ann. Sci. École Norm. Sup.34 (2001) 287-311. Zbl0988.37036MR1841880
- [2] Contreras G., Lopes A.O., Thieullen Ph., Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems21 (2001) 1379-1409. Zbl0997.37016MR1855838
- [3] Dobrynskiĭ V.A., There exist endomorphisms of a plane that have two-dimensional attractors, Dokl. Akad. Nauk364 (1999) 303-305. Zbl0963.37022MR1706213
- [4] Frederickson P., Kaplan J.L., Yorke E.D., Yorke J.A., The Liapunov dimension of strange attractors, J. Differential Equations49 (1983) 185-207. Zbl0515.34040MR708642
- [5] O. Jenkinson, R.D. Mauldin, M. Urbański, Ergodic optimization for non-compact dynamical systems, preprint, September 2004. Zbl1170.28303
- [6] Kaplan J.L., Yorke J.A., Chaotic behavior of multidimensional difference equations, in: Functional differential equations and approximation of fixed points, Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978, Lecture Notes in Math., vol. 730, Springer, Berlin, 1979, pp. 204-227. Zbl0448.58020MR547989
- [7] Katznelson Y., An Introduction to Harmonic Analysis, Dover, 1976. Zbl0352.43001MR422992
- [8] Milnor J., On the concept of attractor, Comm. Math. Phys.99 (1985) 177-195. Zbl0595.58028MR790735
- [9] Pryzyticki F., On U-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math.60 (1977) 61-77. Zbl0343.58008MR445553
- [10] Tsujii M., Fat solenoidal attractors, Nonlinearity14 (2001) 1011-1027. Zbl1067.37028MR1862809
- [11] Tsujii M., Physical measures for partially hyperbolic surface endomorphisms, math.DS/0301243. Zbl1105.37022
- [12] Viana M., Multidimensional nonhyperbolic attractors, Inst. Hautes Études Sci. Publ. Math.85 (1997) 63-96. Zbl1037.37016MR1471866
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.