On the topology of solenoidal attractors of the cylinder

Rodrigo Bamón; Jan Kiwi[1]; Juan Rivera-Letelier; Richard Urzúa

  • [1] Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 2, page 209-236
  • ISSN: 0294-1449

How to cite

top

Bamón, Rodrigo, et al. "On the topology of solenoidal attractors of the cylinder." Annales de l'I.H.P. Analyse non linéaire 23.2 (2006): 209-236. <http://eudml.org/doc/78690>.

@article{Bamón2006,
affiliation = {Facultad de Matemáticas Pontificia Universidad Católica Casilla 306, Correo 22, Santiago (Chile)},
author = {Bamón, Rodrigo, Kiwi, Jan, Rivera-Letelier, Juan, Urzúa, Richard},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {attractors; endomorphisms},
language = {eng},
number = {2},
pages = {209-236},
publisher = {Elsevier},
title = {On the topology of solenoidal attractors of the cylinder},
url = {http://eudml.org/doc/78690},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Bamón, Rodrigo
AU - Kiwi, Jan
AU - Rivera-Letelier, Juan
AU - Urzúa, Richard
TI - On the topology of solenoidal attractors of the cylinder
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 2
SP - 209
EP - 236
LA - eng
KW - attractors; endomorphisms
UR - http://eudml.org/doc/78690
ER -

References

top
  1. [1] Bousch T., La condition de Walters, Ann. Sci. École Norm. Sup.34 (2001) 287-311. Zbl0988.37036MR1841880
  2. [2] Contreras G., Lopes A.O., Thieullen Ph., Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems21 (2001) 1379-1409. Zbl0997.37016MR1855838
  3. [3] Dobrynskiĭ V.A., There exist endomorphisms of a plane that have two-dimensional attractors, Dokl. Akad. Nauk364 (1999) 303-305. Zbl0963.37022MR1706213
  4. [4] Frederickson P., Kaplan J.L., Yorke E.D., Yorke J.A., The Liapunov dimension of strange attractors, J. Differential Equations49 (1983) 185-207. Zbl0515.34040MR708642
  5. [5] O. Jenkinson, R.D. Mauldin, M. Urbański, Ergodic optimization for non-compact dynamical systems, preprint, September 2004. Zbl1170.28303
  6. [6] Kaplan J.L., Yorke J.A., Chaotic behavior of multidimensional difference equations, in: Functional differential equations and approximation of fixed points, Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978, Lecture Notes in Math., vol. 730, Springer, Berlin, 1979, pp. 204-227. Zbl0448.58020MR547989
  7. [7] Katznelson Y., An Introduction to Harmonic Analysis, Dover, 1976. Zbl0352.43001MR422992
  8. [8] Milnor J., On the concept of attractor, Comm. Math. Phys.99 (1985) 177-195. Zbl0595.58028MR790735
  9. [9] Pryzyticki F., On U-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math.60 (1977) 61-77. Zbl0343.58008MR445553
  10. [10] Tsujii M., Fat solenoidal attractors, Nonlinearity14 (2001) 1011-1027. Zbl1067.37028MR1862809
  11. [11] Tsujii M., Physical measures for partially hyperbolic surface endomorphisms, math.DS/0301243. Zbl1105.37022
  12. [12] Viana M., Multidimensional nonhyperbolic attractors, Inst. Hautes Études Sci. Publ. Math.85 (1997) 63-96. Zbl1037.37016MR1471866

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.