La condition de Walters

Thierry Bousch

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 2, page 287-311
  • ISSN: 0012-9593

How to cite

top

Bousch, Thierry. "La condition de Walters." Annales scientifiques de l'École Normale Supérieure 34.2 (2001): 287-311. <http://eudml.org/doc/82544>.

@article{Bousch2001,
author = {Bousch, Thierry},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {invariant measures; equilibrium states; thermodynamic formalism; Walter condition; maximizing measures; normal forms},
language = {fre},
number = {2},
pages = {287-311},
publisher = {Elsevier},
title = {La condition de Walters},
url = {http://eudml.org/doc/82544},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Bousch, Thierry
TI - La condition de Walters
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 2
SP - 287
EP - 311
LA - fre
KW - invariant measures; equilibrium states; thermodynamic formalism; Walter condition; maximizing measures; normal forms
UR - http://eudml.org/doc/82544
ER -

References

top
  1. [1] Aliprantis C.D, Border K.C, Infinite-Dimensional Analysis: A Hitchhiker's Guide, Springer-Verlag, 1999. Zbl0839.46001MR1717083
  2. [2] Bousch T, Le poisson n'a pas d'arêtes, Preprint, Université d'Orsay, 1999, [à paraître dans Ann. Inst. Henri-Poincaré, Probab.-Statis.]. 
  3. [3] Carlson D.A, Haurie A.B, Leizarowitz A, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems, Springer-Verlag, 1991. Zbl0758.49001
  4. [4] Coelho Z, Entropy and ergodicity of skew-products over subshifts of finite type and central limit asymptotics, Thèse, Université de Warwick, 1990. 
  5. [5] Coelho Z, Quas A.N, Criteria for -continuity, Trans. Amer. Math. Soc.350 (1998). Zbl0907.28013
  6. [6] Contreras G, Lopes A, Thieullen P, Lyapunov minimizing measures for expanding maps of the circle, Manuscrit, 1999. Zbl0997.37016
  7. [7] Fathi A, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Série I324 (1997). Zbl0885.58022MR1451248
  8. [8] Hunt B.R, Ott E, Optimal periodic orbits of chaotic systems occur at low period, Phys. Rev. E54 (1996) 328. 
  9. [9] Jenkinson O.M, Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures, Thèse, Université de Warwick, 1996. 
  10. [10] Jenkinson O.M, Frequency-locking on the boundary of the barycentre set, Experimental Mathematics9 (2000). Zbl1106.37303MR1780215
  11. [11] Kondah A, Maume V, Schmitt B, Vitesse de convergence vers l'état d'équilibre pour des dynamiques markoviennes non höldériennes, Ann. Inst. Henri-Poincaré, Probab.-Statis.33 (1997). Zbl0913.60046MR1484537
  12. [12] Livšic A.N, Homology properties of Y-systems, Math. Zametki10 (1971), [Traduction anglaise: Math. Notes10 (1971)]. Zbl0235.58010MR293669
  13. [13] Mañé R, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity9 (1996). Zbl0886.58037MR1384478
  14. [14] Rudin W, Real and Complex Analysis, McGraw-Hill, 1987. Zbl0925.00005MR924157
  15. [15] Sinaĭ Y.G, Gibbs measures in ergodic theory, Uspekhi Math. Nauk27 (1972), [Traduction anglaise: Russian Math. Surveys27 (1972)]. Zbl0255.28016MR399421
  16. [16] Walters P, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc.236 (1978). Zbl0375.28009MR466493
  17. [17] Yuan G, Hunt B.R, Optimal orbits of hyperbolic systems, Nonlinearity12 (1999). Zbl0951.37006MR1709845
  18. [18] Ziemian K, Rotation sets for subshifts of finite type, Fund. Math.146 (1995). Zbl0821.58017MR1314983

NotesEmbed ?

top

You must be logged in to post comments.