Corner defects in almost planar interface propagation

Mariana Haragus; Arnd Scheel

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 3, page 283-329
  • ISSN: 0294-1449

How to cite

top

Haragus, Mariana, and Scheel, Arnd. "Corner defects in almost planar interface propagation." Annales de l'I.H.P. Analyse non linéaire 23.3 (2006): 283-329. <http://eudml.org/doc/78693>.

@article{Haragus2006,
author = {Haragus, Mariana, Scheel, Arnd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {reaction-diffusion systems; front propagation; Kuramoto-Sivashinsky equation; generic defects},
language = {eng},
number = {3},
pages = {283-329},
publisher = {Elsevier},
title = {Corner defects in almost planar interface propagation},
url = {http://eudml.org/doc/78693},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Haragus, Mariana
AU - Scheel, Arnd
TI - Corner defects in almost planar interface propagation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 3
SP - 283
EP - 329
LA - eng
KW - reaction-diffusion systems; front propagation; Kuramoto-Sivashinsky equation; generic defects
UR - http://eudml.org/doc/78693
ER -

References

top
  1. [1] Alexander J., Gardner R., Jones C.K.R.T., A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math.410 (1990) 167-212. Zbl0705.35070MR1068805
  2. [2] Bardi M., Crandall M.G., Evans L.C., Soner H.M., Souganidis P.E., Viscosity Solutions and Applications, Lecture Notes in Math., vol. 1660, Springer-Verlag, Berlin, 1997. MR1462699
  3. [3] Bonnet A., Hamel F., Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal.31 (1999) 80-118. Zbl0942.35072MR1742304
  4. [4] Briggs R.J., Electron-Steam Interaction with Plasmas, MIT Press, Cambridge, 1964. 
  5. [5] Bykov V.V., The bifurcations of separatrix contours and chaos, Physica D62 (1993) 290-299. Zbl0799.58054MR1207427
  6. [6] Caginalp G., Chen X., Convergence of the phase field model to its sharp interface limits, Eur. J. Appl. Math.9 (1998) 417-445. Zbl0930.35024MR1643668
  7. [7] Cahn J.W., Mallet-Paret J., Van Vleck E.S., Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math.59 (1999) 455-493. Zbl0917.34052MR1654427
  8. [8] Clarke S.R., Miller P.D., On the semi-classical limit for the focusing nonlinear Schrödinger equation: sensitivity to analytic properties of the initial data, Proc. Roy. Soc. London Ser. A (2002) 135-156. Zbl0997.35085MR1879462
  9. [9] Davies D.W., Blanchedeau P., Dulos E., De Kepper P., Dividing blobs, chemical flowers and patterned islands in a reaction–diffusion system, J. Chem. Phys.102 (1998) 8236-8244. 
  10. [10] Doelman A., Sandstede B., Scheel A., Schneider G., Propagation of hexagonal patterns near onset, Eur. J. Appl. Math.14 (2003) 85-110. Zbl1044.37049MR1970238
  11. [11] A. Doelman, B. Sandstede, A. Scheel, G. Schneider, The dynamics of modulated wave trains, Preprint, 2004. Zbl1179.35005
  12. [12] Engler H., Asymptotic stability of travelling wave solutions for perturbations with algebraic decay, J. Differential Equations185 (2002) 348-369. Zbl1040.35094MR1938123
  13. [13] E. Eszter, Evans function analysis of the stability of periodic travelling wave solutions of the FitzHugh–Nagumo system, PhD Thesis, University of Massachusetts at Amherst, 1999. 
  14. [14] Fiedler B., Sandstede B., Scheel A., Wulff C., Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and drifts, Documenta Math.1 (1996) 479-505. Zbl0870.58014MR1425301
  15. [15] Fife P.C., Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 53, SIAM, Philadelphia, PA, 1988. Zbl0684.35001MR981594
  16. [16] Gardner R.A., Zumbrun K., The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math.51 (1998) 797-855. Zbl0933.35136MR1617251
  17. [17] Golovin A.A., Nepomnyashchy A.A., Matkowsky B.J., Traveling and spiral waves for sequential flames with translation symmetry: coupled CGL-Burgers equations, Physica D160 (2001) 1-28. Zbl0982.80007MR1872551
  18. [18] Hale J.K., Peletier L.A., Troy W.C., Stability and instability in the Gray–Scott model: the case of equal diffusivities, Appl. Math. Lett.12 (1999) 59-65. Zbl0936.92034MR1750599
  19. [19] Hale J.K., Peletier L.A., Troy W.C., Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis, SIAM J. Appl. Math.61 (2000) 102-130. Zbl0965.34037MR1776389
  20. [20] Hamel F., Monneau R., Solutions of semilinear elliptic equations in R N with conical-shaped level sets, Comm. Partial Differential Equations25 (2000) 769-819. Zbl0952.35041MR1759793
  21. [21] Hamel F., Monneau R., Roquejoffre J.-M., Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. École Norm. Sup. (4)37 (2004) 469-506. Zbl1085.35075MR2060484
  22. [22] Hamik C.T., Steinbock O., Shock structures and bunching fronts in excitable reaction–diffusion systems, Phys. Rev. E65 (2002) 046224. 
  23. [23] Haragus M., Kirchgässner K., Breaking the dimension of a steady wave: some examples, in: Nonlinear Dynamics and Pattern Formation in the Natural Environment, Pitman Res. Notes Math. Ser., vol. 335, Longman, Harlow, 1995, pp. 119-129. Zbl0837.35131MR1381910
  24. [24] Haragus M., Kirchgässner K., Breaking the dimension of solitary waves, in: Progress in Partial Differential Equations: The Metz Surveys, 4, Pitman Res. Notes Math. Ser., vol. 345, Longman, Harlow, 1996, pp. 216-228. Zbl0856.35110MR1394716
  25. [25] Hartmann N., Kevrekidis Y., Imbihl R., Pattern formation in restricted geometries: the NO + CO reaction on Pt(100), J. Chem. Phys.112 (2000) 6795-6803. 
  26. [26] Hastings S., On the existence of homoclinic and periodic orbits for the FitzHugh–Nagumo equations, Quart. J. Math. Oxford Ser.27 (1976) 123-134. Zbl0322.92008MR393759
  27. [27] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 804, Springer-Verlag, New York, 1981. Zbl0456.35001MR610244
  28. [28] Hoff D., Zumbrun K., Asymptotic behavior of multidimensional scalar viscous shock fronts, Indiana Univ. Math. J.49 (2000) 427-474. Zbl0967.76049MR1793680
  29. [29] Iibun T., Sakamoto K., Internal layers intersecting the boundary of domain in the Allen–Cahn equation, Japan J. Indust. Appl. Math.18 (2001) 697-738. Zbl0987.35078MR1862434
  30. [30] Imbihl R., Engel H., Eiswirth M., Dynamics of patterns of chemical reactions on surfaces, in: Evolution of Spontaneous Structures in Dissipative Continuous Systems, Lecture Notes in Phys., vol. 55, Springer, Berlin, 1998, pp. 384-410. Zbl0933.76098
  31. [31] Iooss G., Adelmeyer M., Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam., vol. 3, World Scientific, River Edge, NJ, 1998. Zbl0968.34027MR1695170
  32. [32] Jones C.K.R.T., Stability of the travelling wave solution of the FitzHugh–Nagumo system, Trans. Amer. Math. Soc.286 (1984) 431-469. Zbl0567.35044MR760971
  33. [33] Jones C.K.R.T., Gardner R., Kapitula T., Stability of travelling waves for nonconvex scalar viscous conservation laws, Comm. Pure Appl. Math.46 (1993) 505-526. Zbl0791.35078MR1211740
  34. [34] Kærn M., Menzinger M., Pulsating wave propagation in reactive flows: flow-distributed oscillations, Phys. Rev. E61 (2000) 3334-3338. 
  35. [35] Kapitula T., On the stability of travelling waves in weighted L spaces, J. Differential Equations112 (1994) 179-215. Zbl0803.35067MR1287557
  36. [36] Kapitula T., Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc.349 (1997) 257-269. Zbl0866.35021MR1360225
  37. [37] Kapitula T., Sandstede B., Stability of bright solitary wave solutions to perturbed nonlinear Schrödinger equations, Physica D124 (1998) 58-103. Zbl0935.35150MR1662530
  38. [38] Kent P., Elgin J., Travelling-waves of the Kuramoto–Sivashinsky equation: period-multiplying bifurcations, Nonlinearity5 (1992) 899-919. Zbl0771.35006MR1174223
  39. [39] Kirchgässner K., Wave-solutions of reversible systems and applications, J. Differential Equations45 (1982) 113-127. Zbl0507.35033MR662490
  40. [40] Lega J., Moloney J.V., Newell A.C., Swift–Hohenberg equation for lasers, Phys. Rev. Lett.73 (1994) 2978-2981. 
  41. [41] Liu T.-P., Métivier G., Smoller J., Temple B., Yong W.-A., Zumbrun K., Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser, Boston, MA, 2001. MR1842773
  42. [42] Lombardi E., Oscillatory Integrals and Phenomena beyond all Algebraic Orders. With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., vol. 1741, Springer-Verlag, Berlin, 2000. Zbl0959.34002MR1770093
  43. [43] Markus L., Quadratic differential equations and non-associative algebras, in: Contributions to the Theory of Nonlinear Oscillations, vol. V, Princeton University Press, Princeton, NJ, 1960, pp. 185-213. Zbl0119.29803MR132743
  44. [44] Matkowsky B.J., Olagunju D.O., Pulsations in a burner-stabilized premixed plane flame, SIAM J. Appl. Math.40 (1981) 551-562. Zbl0484.76094MR614749
  45. [45] Mielke A., Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci.10 (1988) 51-66. Zbl0647.35034MR929221
  46. [46] Nishiura Y., Ueyama D., Spatio-temporal chaos for the Gray–Scott model, Physica D150 (2001) 137-162. Zbl0981.35022
  47. [47] Palmer K.J., Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc.104 (1988) 149-156. Zbl0675.34006MR958058
  48. [48] Pismen L.M., Nepomnyashchy A.A., Propagation of the hexagonal pattern, Europhys. Lett.27 (1994) 433-436. 
  49. [49] Sakamoto K., Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. Roy. Soc. Edinburgh Sect. A116 (1990) 45-78. Zbl0719.34086MR1076353
  50. [50] Sandstede B., Scheel A., Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D145 (2000) 233-277. Zbl0963.34072MR1782392
  51. [51] Sandstede B., Scheel A., On the structure of spectra of modulated travelling waves, Math. Nachr.232 (2001) 39-93. Zbl0994.35025MR1871473
  52. [52] Sandstede B., Scheel A., Essential instabilities of fronts: bifurcation and bifurcation failure, Dynamical Systems16 (2001) 1-28. Zbl1055.37069MR1835905
  53. [53] Sandstede B., Scheel A., On the stability of periodic travelling waves with large spatial period, J. Differential Equations172 (2001) 134-188. Zbl0994.34035MR1824088
  54. [54] Sandstede B., Scheel A., Defects in oscillatory media: toward a classification, SIAM J. Appl. Dyn. Syst.3 (2004) 1-68. Zbl1059.37062MR2067899
  55. [55] Sandstede B., Scheel A., Wulff C., Dynamics of spiral waves on unbounded domains using center-manifold reduction, J. Differential Equations141 (1997) 122-149. Zbl0888.35053MR1485945
  56. [56] Sattinger D.H., On the stability of waves of nonlinear parabolic systems, Adv. in Math.22 (1976) 312-355. Zbl0344.35051MR435602
  57. [57] Scheel A., Radially symmetric patterns of reaction–diffusion systems, Mem. Amer. Math. Soc.165 (2003). Zbl1036.35092MR1997690
  58. [58] Schöll E., Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, Cambridge Nonlinear Science Series, vol. 10, Cambridge University Press, 2001. 
  59. [59] Sivashinsky G.I., Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivation of basic equations, Acta Astronautica4 (1977) 1177-1206. Zbl0427.76047MR502829
  60. [60] Tsujikawa T., Nagai T., Mimura M., Kobayashi R., Ikeda H., Stability properties of traveling pulse solutions of the higher-dimensional FitzHugh–Nagumo equations, Japan J. Appl. Math.6 (1989) 341-366. Zbl0702.35017MR1019681
  61. [61] Tyson J.J., Keener J.P., Singular perturbation theory of traveling waves in excitable media (a review), Physica D32 (1988) 327-361. Zbl0656.76018MR980194
  62. [62] van Saarloos W., Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence, Phys. Rev. A39 (1989) 6367-6390. MR1003567
  63. [63] van Saarloos W., Front propagation into unstable states, Phys. Rep.386 (2003) 29-222. Zbl1042.74029
  64. [64] Volpert A.I., Volpert V.A., Volpert V.A., Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monographs, vol. 140, American Mathematical Society, Providence, RI, 1994. Zbl1001.35060MR1297766
  65. [65] Williams F.A., Combustion Theory, Benjamin Cummings, Menlo Park, 1985. 
  66. [66] Winfree A.T., The Geometry of Biological Time, Interdiscip. Appl. Math., vol. 12, Springer-Verlag, New York, 2001. Zbl1014.92001MR1833606
  67. [67] Yanagida E., Stability of fast travelling pulse solutions of the FitzHugh–Nagumo equations, J. Math. Biology22 (1985) 81-104. Zbl0566.92009MR802737

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.