Corner defects in almost planar interface propagation
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 3, page 283-329
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHaragus, Mariana, and Scheel, Arnd. "Corner defects in almost planar interface propagation." Annales de l'I.H.P. Analyse non linéaire 23.3 (2006): 283-329. <http://eudml.org/doc/78693>.
@article{Haragus2006,
author = {Haragus, Mariana, Scheel, Arnd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {reaction-diffusion systems; front propagation; Kuramoto-Sivashinsky equation; generic defects},
language = {eng},
number = {3},
pages = {283-329},
publisher = {Elsevier},
title = {Corner defects in almost planar interface propagation},
url = {http://eudml.org/doc/78693},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Haragus, Mariana
AU - Scheel, Arnd
TI - Corner defects in almost planar interface propagation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 3
SP - 283
EP - 329
LA - eng
KW - reaction-diffusion systems; front propagation; Kuramoto-Sivashinsky equation; generic defects
UR - http://eudml.org/doc/78693
ER -
References
top- [1] Alexander J., Gardner R., Jones C.K.R.T., A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math.410 (1990) 167-212. Zbl0705.35070MR1068805
- [2] Bardi M., Crandall M.G., Evans L.C., Soner H.M., Souganidis P.E., Viscosity Solutions and Applications, Lecture Notes in Math., vol. 1660, Springer-Verlag, Berlin, 1997. MR1462699
- [3] Bonnet A., Hamel F., Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal.31 (1999) 80-118. Zbl0942.35072MR1742304
- [4] Briggs R.J., Electron-Steam Interaction with Plasmas, MIT Press, Cambridge, 1964.
- [5] Bykov V.V., The bifurcations of separatrix contours and chaos, Physica D62 (1993) 290-299. Zbl0799.58054MR1207427
- [6] Caginalp G., Chen X., Convergence of the phase field model to its sharp interface limits, Eur. J. Appl. Math.9 (1998) 417-445. Zbl0930.35024MR1643668
- [7] Cahn J.W., Mallet-Paret J., Van Vleck E.S., Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math.59 (1999) 455-493. Zbl0917.34052MR1654427
- [8] Clarke S.R., Miller P.D., On the semi-classical limit for the focusing nonlinear Schrödinger equation: sensitivity to analytic properties of the initial data, Proc. Roy. Soc. London Ser. A (2002) 135-156. Zbl0997.35085MR1879462
- [9] Davies D.W., Blanchedeau P., Dulos E., De Kepper P., Dividing blobs, chemical flowers and patterned islands in a reaction–diffusion system, J. Chem. Phys.102 (1998) 8236-8244.
- [10] Doelman A., Sandstede B., Scheel A., Schneider G., Propagation of hexagonal patterns near onset, Eur. J. Appl. Math.14 (2003) 85-110. Zbl1044.37049MR1970238
- [11] A. Doelman, B. Sandstede, A. Scheel, G. Schneider, The dynamics of modulated wave trains, Preprint, 2004. Zbl1179.35005
- [12] Engler H., Asymptotic stability of travelling wave solutions for perturbations with algebraic decay, J. Differential Equations185 (2002) 348-369. Zbl1040.35094MR1938123
- [13] E. Eszter, Evans function analysis of the stability of periodic travelling wave solutions of the FitzHugh–Nagumo system, PhD Thesis, University of Massachusetts at Amherst, 1999.
- [14] Fiedler B., Sandstede B., Scheel A., Wulff C., Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and drifts, Documenta Math.1 (1996) 479-505. Zbl0870.58014MR1425301
- [15] Fife P.C., Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 53, SIAM, Philadelphia, PA, 1988. Zbl0684.35001MR981594
- [16] Gardner R.A., Zumbrun K., The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math.51 (1998) 797-855. Zbl0933.35136MR1617251
- [17] Golovin A.A., Nepomnyashchy A.A., Matkowsky B.J., Traveling and spiral waves for sequential flames with translation symmetry: coupled CGL-Burgers equations, Physica D160 (2001) 1-28. Zbl0982.80007MR1872551
- [18] Hale J.K., Peletier L.A., Troy W.C., Stability and instability in the Gray–Scott model: the case of equal diffusivities, Appl. Math. Lett.12 (1999) 59-65. Zbl0936.92034MR1750599
- [19] Hale J.K., Peletier L.A., Troy W.C., Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis, SIAM J. Appl. Math.61 (2000) 102-130. Zbl0965.34037MR1776389
- [20] Hamel F., Monneau R., Solutions of semilinear elliptic equations in with conical-shaped level sets, Comm. Partial Differential Equations25 (2000) 769-819. Zbl0952.35041MR1759793
- [21] Hamel F., Monneau R., Roquejoffre J.-M., Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. École Norm. Sup. (4)37 (2004) 469-506. Zbl1085.35075MR2060484
- [22] Hamik C.T., Steinbock O., Shock structures and bunching fronts in excitable reaction–diffusion systems, Phys. Rev. E65 (2002) 046224.
- [23] Haragus M., Kirchgässner K., Breaking the dimension of a steady wave: some examples, in: Nonlinear Dynamics and Pattern Formation in the Natural Environment, Pitman Res. Notes Math. Ser., vol. 335, Longman, Harlow, 1995, pp. 119-129. Zbl0837.35131MR1381910
- [24] Haragus M., Kirchgässner K., Breaking the dimension of solitary waves, in: Progress in Partial Differential Equations: The Metz Surveys, 4, Pitman Res. Notes Math. Ser., vol. 345, Longman, Harlow, 1996, pp. 216-228. Zbl0856.35110MR1394716
- [25] Hartmann N., Kevrekidis Y., Imbihl R., Pattern formation in restricted geometries: the NO + CO reaction on Pt(100), J. Chem. Phys.112 (2000) 6795-6803.
- [26] Hastings S., On the existence of homoclinic and periodic orbits for the FitzHugh–Nagumo equations, Quart. J. Math. Oxford Ser.27 (1976) 123-134. Zbl0322.92008MR393759
- [27] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 804, Springer-Verlag, New York, 1981. Zbl0456.35001MR610244
- [28] Hoff D., Zumbrun K., Asymptotic behavior of multidimensional scalar viscous shock fronts, Indiana Univ. Math. J.49 (2000) 427-474. Zbl0967.76049MR1793680
- [29] Iibun T., Sakamoto K., Internal layers intersecting the boundary of domain in the Allen–Cahn equation, Japan J. Indust. Appl. Math.18 (2001) 697-738. Zbl0987.35078MR1862434
- [30] Imbihl R., Engel H., Eiswirth M., Dynamics of patterns of chemical reactions on surfaces, in: Evolution of Spontaneous Structures in Dissipative Continuous Systems, Lecture Notes in Phys., vol. 55, Springer, Berlin, 1998, pp. 384-410. Zbl0933.76098
- [31] Iooss G., Adelmeyer M., Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam., vol. 3, World Scientific, River Edge, NJ, 1998. Zbl0968.34027MR1695170
- [32] Jones C.K.R.T., Stability of the travelling wave solution of the FitzHugh–Nagumo system, Trans. Amer. Math. Soc.286 (1984) 431-469. Zbl0567.35044MR760971
- [33] Jones C.K.R.T., Gardner R., Kapitula T., Stability of travelling waves for nonconvex scalar viscous conservation laws, Comm. Pure Appl. Math.46 (1993) 505-526. Zbl0791.35078MR1211740
- [34] Kærn M., Menzinger M., Pulsating wave propagation in reactive flows: flow-distributed oscillations, Phys. Rev. E61 (2000) 3334-3338.
- [35] Kapitula T., On the stability of travelling waves in weighted spaces, J. Differential Equations112 (1994) 179-215. Zbl0803.35067MR1287557
- [36] Kapitula T., Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc.349 (1997) 257-269. Zbl0866.35021MR1360225
- [37] Kapitula T., Sandstede B., Stability of bright solitary wave solutions to perturbed nonlinear Schrödinger equations, Physica D124 (1998) 58-103. Zbl0935.35150MR1662530
- [38] Kent P., Elgin J., Travelling-waves of the Kuramoto–Sivashinsky equation: period-multiplying bifurcations, Nonlinearity5 (1992) 899-919. Zbl0771.35006MR1174223
- [39] Kirchgässner K., Wave-solutions of reversible systems and applications, J. Differential Equations45 (1982) 113-127. Zbl0507.35033MR662490
- [40] Lega J., Moloney J.V., Newell A.C., Swift–Hohenberg equation for lasers, Phys. Rev. Lett.73 (1994) 2978-2981.
- [41] Liu T.-P., Métivier G., Smoller J., Temple B., Yong W.-A., Zumbrun K., Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser, Boston, MA, 2001. MR1842773
- [42] Lombardi E., Oscillatory Integrals and Phenomena beyond all Algebraic Orders. With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., vol. 1741, Springer-Verlag, Berlin, 2000. Zbl0959.34002MR1770093
- [43] Markus L., Quadratic differential equations and non-associative algebras, in: Contributions to the Theory of Nonlinear Oscillations, vol. V, Princeton University Press, Princeton, NJ, 1960, pp. 185-213. Zbl0119.29803MR132743
- [44] Matkowsky B.J., Olagunju D.O., Pulsations in a burner-stabilized premixed plane flame, SIAM J. Appl. Math.40 (1981) 551-562. Zbl0484.76094MR614749
- [45] Mielke A., Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci.10 (1988) 51-66. Zbl0647.35034MR929221
- [46] Nishiura Y., Ueyama D., Spatio-temporal chaos for the Gray–Scott model, Physica D150 (2001) 137-162. Zbl0981.35022
- [47] Palmer K.J., Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc.104 (1988) 149-156. Zbl0675.34006MR958058
- [48] Pismen L.M., Nepomnyashchy A.A., Propagation of the hexagonal pattern, Europhys. Lett.27 (1994) 433-436.
- [49] Sakamoto K., Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. Roy. Soc. Edinburgh Sect. A116 (1990) 45-78. Zbl0719.34086MR1076353
- [50] Sandstede B., Scheel A., Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D145 (2000) 233-277. Zbl0963.34072MR1782392
- [51] Sandstede B., Scheel A., On the structure of spectra of modulated travelling waves, Math. Nachr.232 (2001) 39-93. Zbl0994.35025MR1871473
- [52] Sandstede B., Scheel A., Essential instabilities of fronts: bifurcation and bifurcation failure, Dynamical Systems16 (2001) 1-28. Zbl1055.37069MR1835905
- [53] Sandstede B., Scheel A., On the stability of periodic travelling waves with large spatial period, J. Differential Equations172 (2001) 134-188. Zbl0994.34035MR1824088
- [54] Sandstede B., Scheel A., Defects in oscillatory media: toward a classification, SIAM J. Appl. Dyn. Syst.3 (2004) 1-68. Zbl1059.37062MR2067899
- [55] Sandstede B., Scheel A., Wulff C., Dynamics of spiral waves on unbounded domains using center-manifold reduction, J. Differential Equations141 (1997) 122-149. Zbl0888.35053MR1485945
- [56] Sattinger D.H., On the stability of waves of nonlinear parabolic systems, Adv. in Math.22 (1976) 312-355. Zbl0344.35051MR435602
- [57] Scheel A., Radially symmetric patterns of reaction–diffusion systems, Mem. Amer. Math. Soc.165 (2003). Zbl1036.35092MR1997690
- [58] Schöll E., Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, Cambridge Nonlinear Science Series, vol. 10, Cambridge University Press, 2001.
- [59] Sivashinsky G.I., Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivation of basic equations, Acta Astronautica4 (1977) 1177-1206. Zbl0427.76047MR502829
- [60] Tsujikawa T., Nagai T., Mimura M., Kobayashi R., Ikeda H., Stability properties of traveling pulse solutions of the higher-dimensional FitzHugh–Nagumo equations, Japan J. Appl. Math.6 (1989) 341-366. Zbl0702.35017MR1019681
- [61] Tyson J.J., Keener J.P., Singular perturbation theory of traveling waves in excitable media (a review), Physica D32 (1988) 327-361. Zbl0656.76018MR980194
- [62] van Saarloos W., Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence, Phys. Rev. A39 (1989) 6367-6390. MR1003567
- [63] van Saarloos W., Front propagation into unstable states, Phys. Rep.386 (2003) 29-222. Zbl1042.74029
- [64] Volpert A.I., Volpert V.A., Volpert V.A., Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monographs, vol. 140, American Mathematical Society, Providence, RI, 1994. Zbl1001.35060MR1297766
- [65] Williams F.A., Combustion Theory, Benjamin Cummings, Menlo Park, 1985.
- [66] Winfree A.T., The Geometry of Biological Time, Interdiscip. Appl. Math., vol. 12, Springer-Verlag, New York, 2001. Zbl1014.92001MR1833606
- [67] Yanagida E., Stability of fast travelling pulse solutions of the FitzHugh–Nagumo equations, J. Math. Biology22 (1985) 81-104. Zbl0566.92009MR802737
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.