Non-planar fronts in Boussinesq reactive flows
Henri Berestycki; Peter Constantin; Lenya Ryzhik
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 4, page 407-437
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBerestycki, Henri, Constantin, Peter, and Ryzhik, Lenya. "Non-planar fronts in Boussinesq reactive flows." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 407-437. <http://eudml.org/doc/78697>.
@article{Berestycki2006,
author = {Berestycki, Henri, Constantin, Peter, Ryzhik, Lenya},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {4},
pages = {407-437},
publisher = {Elsevier},
title = {Non-planar fronts in Boussinesq reactive flows},
url = {http://eudml.org/doc/78697},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Berestycki, Henri
AU - Constantin, Peter
AU - Ryzhik, Lenya
TI - Non-planar fronts in Boussinesq reactive flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 407
EP - 437
LA - eng
UR - http://eudml.org/doc/78697
ER -
References
top- [1] Abel M., Celani A., Vergni D., Vulpiani A., Front propagation in laminar flows, Phys. Rev. E64 (2001) 6307.
- [2] Abel M., Cencini M., Vergni D., Vulpiani A., Front speed enhancement in cellular flows, Chaos12 (2002) 481. Zbl1080.80501MR1907659
- [3] Audoly B., Berestycki H., Pomeau Y., Réaction diffusion en écoulement stationnaire rapide, C. R. Acad. Sci. Ser. IIb328 (2000) 255-262. Zbl0992.76097
- [4] Belk M., Kazmierczak B., Volpert V., Existence of reaction–diffusion–convection waves in unbounded cylinders, Int. J. Math. Sci.2 (2005) 169-193. Zbl1075.76058MR2143750
- [5] Berestycki H., The influence of advection on the propagation of fronts in reaction–diffusion equations, in: Berestycki H., Pomeau Y. (Eds.), Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, vol. 569, Kluwer Academic, Doordrecht, 2003. Zbl1073.35113
- [6] Berestycki H., Hamel F., Front propagation in periodic excitable media, Comm. Pure Appl. Math.55 (2002) 949-1032. Zbl1024.37054MR1900178
- [7] Berestycki H., Hamel F., Nadirashvili N., The speed of propagation for KPP type problems. I – Periodic framework, J. Eur. Math. Soc.7 (2005) 173-213. Zbl1142.35464MR2127993
- [8] Berestycki H., Hamel F., Nadirashvili N., Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys.253 (2005) 451-480. Zbl1123.35033MR2140256
- [9] Berestycki H., Larrouturou B., Nirenberg L., A nonlinear elliptic problem describing the propagation of a curved premixed flame, in: Brauner C.-M., Schmidt-Lainé C. (Eds.), Mathematical Modeling in Combustion and Related Topics, NATO ASI Series, Kluwer Academic, 1988. MR1011955
- [10] Berestycki H., Larrouturou B., Lions P.L., Multi-dimensional traveling wave solutions of a flame propagation model, Arch. Rational Mech. Anal.111 (1990) 33-49. Zbl0711.35066MR1051478
- [11] Berestycki H., Nicolaenco B., Scheurer B., Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal.16 (1983) 1207-1242. Zbl0596.76096MR807905
- [12] Berestycki H., Nirenberg L., Traveling fronts in cylinders, Ann. Inst. H. Poincaré, Analyse Non Linéare9 (1992) 497-572. Zbl0799.35073MR1191008
- [13] Constantin P., Kiselev A., Oberman A., Ryzhik L., Bulk burning rate in passive-reactive diffusion, Arch. Rational Mech. Anal.154 (2000) 53-91. Zbl0979.76093MR1778121
- [14] Constantin P., Kiselev A., Ryzhik L., Fronts in reactive convection: bounds, stability and instability, Comm. Pure Appl. Math.56 (2003) 1781-1803. Zbl1072.76068MR2001446
- [15] de Wit A., Fingering of chemical fronts in porous media, Phys. Rev. Lett.87 (2001) 054502.
- [16] A. Fannjiang, A. Kiselev, L. Ryzhik, Quenching of reaction by cellular flows, Geom. Funct. Anal. (2006), in press. Zbl1097.35077MR2221252
- [17] Fisher R., The wave of advance of advantageous genes, Ann. Eugenics7 (1937) 355-369. Zbl63.1111.04MR2079JFM63.1111.04
- [18] Freidlin M., Gärtner J., On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl.20 (1979) 1282-1286. Zbl0447.60060MR553200
- [19] Freidlin M., Geometric optics approach to reaction–diffusion equations, SIAM J. Appl. Math.46 (1986) 222-232. Zbl0626.35047MR833475
- [20] Gilbarg D., Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [21] Hamel F., Formules min-max pour les vitesses d'ondes progressives multidimensionnelles, Ann. Fac. Sci. Toulouse Math.8 (6) (1999) 259-280. Zbl0956.35041MR1751443
- [22] Heinze S., Papanicolaou G., Stevens A., Variational principles for propagation speeds in inhomogeneous media, SIAM J. Appl. Math.62 (2001) 129-148. Zbl0995.35031MR1857539
- [23] Kagan L., Sivashinsky G., Flame propagation and extinction in large-scale vortical flows, Combust. Flame120 (2000) 222-232.
- [24] Kagan L., Ronney P.D., Sivashinsky G., Activation energy effect on flame propagation in large-scale vortical flows, Combust. Theory Modelling6 (2002) 479-485. Zbl1068.80516MR1934205
- [25] Kiselev A., Ryzhik L., Enhancement of the travelling front speeds in reaction–diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 309-358. Zbl1002.35069MR1831659
- [26] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., Étude de l'équation de la chaleurde matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh.1 (1937) 1-25, See [31], pp. 105–130 for an English translation. Zbl0018.32106MR278890
- [27] Majda A., Souganidis P., Large scale front dynamics for turbulent reaction–diffusion equations with separated velocity scales, Nonlinearity7 (1994) 1-30. Zbl0839.76093MR1260130
- [28] Malham S., Xin J., Global solutions to a reactive Boussinesq system with front data on an infinite domain, Comm. Math. Phys.193 (1998) 287-316. Zbl0908.35104MR1618155
- [29] Nash J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958) 931-954. Zbl0096.06902MR100158
- [30] Papanicolaou G., Xin X., Reaction diffusion fronts in periodically layered media, J. Statist. Phys.63 (1991) 915-932. MR1116041
- [31] Pelcé P. (Ed.), Dynamics of Curved Fronts, Academic Press, 1988. Zbl0712.76009MR986791
- [32] Texier-Picard R., Volpert V., Problèmes de réaction–diffusion–convection dans des cylindres non bornés, C. R. Acad. Sci. Paris Sér. I Math.333 (2001) 1077-1082. Zbl0991.35044MR1881237
- [33] Texier-Picard R., Volpert V., Reaction–diffusion–convection problems in unbounded cylinders, Rev. Mat. Complut.16 (2003) 223-276. Zbl1048.35034MR2031883
- [34] Vladimirova N., Rosner R., Model flames in the Boussinesq limit: the effects of feedback, Phys. Rev. E67 (2003) 066305. MR1995905
- [35] Volpert V.A., Volpert A.I., Location of spectrum and stability of solutions for monotone parabolic system, Adv. Differential Equations2 (1997) 811-830. Zbl1023.35517MR1751428
- [36] Volpert V.A., Volpert A.I., Existence and stability of multidimensional travelling waves in the monostable case, Israel J. Math.110 (1999) 269-292. Zbl0929.35064MR1750434
- [37] Volpert V.A., Volpert A.I., Spectrum of elliptic operators and stability of travelling waves, Asymptotic Anal.23 (2000) 111-134. Zbl0952.35081MR1771147
- [38] B. Win, Ph.D. thesis, University of Chicago, 2004.
- [39] Xin J., Existence of planar flame fronts in convective–diffusive periodic media, Arch. Rational Mech. Anal.121 (1992) 205-233. Zbl0764.76074MR1188981
- [40] Xin J., Existence and nonexistence of travelling waves and reaction–diffusion front propagation in periodic media, J. Statist. Phys.73 (1993) 893-926. Zbl1102.35340MR1251222
- [41] Xin J., Analysis and modelling of front propagation in heterogeneous media, SIAM Rev.42 (2000) 161-230. Zbl0951.35060MR1778352
- [42] Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M., The Mathematical Theory of Combustion and Explosions, Translated from the Russian by Donald H. McNeill, Consultants Bureau [Plenum], New York, 1985. MR781350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.