Non-planar fronts in Boussinesq reactive flows

Henri Berestycki; Peter Constantin; Lenya Ryzhik

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 4, page 407-437
  • ISSN: 0294-1449

How to cite


Berestycki, Henri, Constantin, Peter, and Ryzhik, Lenya. "Non-planar fronts in Boussinesq reactive flows." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 407-437. <>.

author = {Berestycki, Henri, Constantin, Peter, Ryzhik, Lenya},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {4},
pages = {407-437},
publisher = {Elsevier},
title = {Non-planar fronts in Boussinesq reactive flows},
url = {},
volume = {23},
year = {2006},

AU - Berestycki, Henri
AU - Constantin, Peter
AU - Ryzhik, Lenya
TI - Non-planar fronts in Boussinesq reactive flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 407
EP - 437
LA - eng
UR -
ER -


  1. [1] Abel M., Celani A., Vergni D., Vulpiani A., Front propagation in laminar flows, Phys. Rev. E64 (2001) 6307. 
  2. [2] Abel M., Cencini M., Vergni D., Vulpiani A., Front speed enhancement in cellular flows, Chaos12 (2002) 481. Zbl1080.80501MR1907659
  3. [3] Audoly B., Berestycki H., Pomeau Y., Réaction diffusion en écoulement stationnaire rapide, C. R. Acad. Sci. Ser. IIb328 (2000) 255-262. Zbl0992.76097
  4. [4] Belk M., Kazmierczak B., Volpert V., Existence of reaction–diffusion–convection waves in unbounded cylinders, Int. J. Math. Sci.2 (2005) 169-193. Zbl1075.76058MR2143750
  5. [5] Berestycki H., The influence of advection on the propagation of fronts in reaction–diffusion equations, in: Berestycki H., Pomeau Y. (Eds.), Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, vol. 569, Kluwer Academic, Doordrecht, 2003. Zbl1073.35113
  6. [6] Berestycki H., Hamel F., Front propagation in periodic excitable media, Comm. Pure Appl. Math.55 (2002) 949-1032. Zbl1024.37054MR1900178
  7. [7] Berestycki H., Hamel F., Nadirashvili N., The speed of propagation for KPP type problems. I – Periodic framework, J. Eur. Math. Soc.7 (2005) 173-213. Zbl1142.35464MR2127993
  8. [8] Berestycki H., Hamel F., Nadirashvili N., Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys.253 (2005) 451-480. Zbl1123.35033MR2140256
  9. [9] Berestycki H., Larrouturou B., Nirenberg L., A nonlinear elliptic problem describing the propagation of a curved premixed flame, in: Brauner C.-M., Schmidt-Lainé C. (Eds.), Mathematical Modeling in Combustion and Related Topics, NATO ASI Series, Kluwer Academic, 1988. MR1011955
  10. [10] Berestycki H., Larrouturou B., Lions P.L., Multi-dimensional traveling wave solutions of a flame propagation model, Arch. Rational Mech. Anal.111 (1990) 33-49. Zbl0711.35066MR1051478
  11. [11] Berestycki H., Nicolaenco B., Scheurer B., Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal.16 (1983) 1207-1242. Zbl0596.76096MR807905
  12. [12] Berestycki H., Nirenberg L., Traveling fronts in cylinders, Ann. Inst. H. Poincaré, Analyse Non Linéare9 (1992) 497-572. Zbl0799.35073MR1191008
  13. [13] Constantin P., Kiselev A., Oberman A., Ryzhik L., Bulk burning rate in passive-reactive diffusion, Arch. Rational Mech. Anal.154 (2000) 53-91. Zbl0979.76093MR1778121
  14. [14] Constantin P., Kiselev A., Ryzhik L., Fronts in reactive convection: bounds, stability and instability, Comm. Pure Appl. Math.56 (2003) 1781-1803. Zbl1072.76068MR2001446
  15. [15] de Wit A., Fingering of chemical fronts in porous media, Phys. Rev. Lett.87 (2001) 054502. 
  16. [16] A. Fannjiang, A. Kiselev, L. Ryzhik, Quenching of reaction by cellular flows, Geom. Funct. Anal. (2006), in press. Zbl1097.35077MR2221252
  17. [17] Fisher R., The wave of advance of advantageous genes, Ann. Eugenics7 (1937) 355-369. Zbl63.1111.04MR2079JFM63.1111.04
  18. [18] Freidlin M., Gärtner J., On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl.20 (1979) 1282-1286. Zbl0447.60060MR553200
  19. [19] Freidlin M., Geometric optics approach to reaction–diffusion equations, SIAM J. Appl. Math.46 (1986) 222-232. Zbl0626.35047MR833475
  20. [20] Gilbarg D., Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
  21. [21] Hamel F., Formules min-max pour les vitesses d'ondes progressives multidimensionnelles, Ann. Fac. Sci. Toulouse Math.8 (6) (1999) 259-280. Zbl0956.35041MR1751443
  22. [22] Heinze S., Papanicolaou G., Stevens A., Variational principles for propagation speeds in inhomogeneous media, SIAM J. Appl. Math.62 (2001) 129-148. Zbl0995.35031MR1857539
  23. [23] Kagan L., Sivashinsky G., Flame propagation and extinction in large-scale vortical flows, Combust. Flame120 (2000) 222-232. 
  24. [24] Kagan L., Ronney P.D., Sivashinsky G., Activation energy effect on flame propagation in large-scale vortical flows, Combust. Theory Modelling6 (2002) 479-485. Zbl1068.80516MR1934205
  25. [25] Kiselev A., Ryzhik L., Enhancement of the travelling front speeds in reaction–diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 309-358. Zbl1002.35069MR1831659
  26. [26] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., Étude de l'équation de la chaleurde matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh.1 (1937) 1-25, See [31], pp. 105–130 for an English translation. Zbl0018.32106MR278890
  27. [27] Majda A., Souganidis P., Large scale front dynamics for turbulent reaction–diffusion equations with separated velocity scales, Nonlinearity7 (1994) 1-30. Zbl0839.76093MR1260130
  28. [28] Malham S., Xin J., Global solutions to a reactive Boussinesq system with front data on an infinite domain, Comm. Math. Phys.193 (1998) 287-316. Zbl0908.35104MR1618155
  29. [29] Nash J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958) 931-954. Zbl0096.06902MR100158
  30. [30] Papanicolaou G., Xin X., Reaction diffusion fronts in periodically layered media, J. Statist. Phys.63 (1991) 915-932. MR1116041
  31. [31] Pelcé P. (Ed.), Dynamics of Curved Fronts, Academic Press, 1988. Zbl0712.76009MR986791
  32. [32] Texier-Picard R., Volpert V., Problèmes de réaction–diffusion–convection dans des cylindres non bornés, C. R. Acad. Sci. Paris Sér. I Math.333 (2001) 1077-1082. Zbl0991.35044MR1881237
  33. [33] Texier-Picard R., Volpert V., Reaction–diffusion–convection problems in unbounded cylinders, Rev. Mat. Complut.16 (2003) 223-276. Zbl1048.35034MR2031883
  34. [34] Vladimirova N., Rosner R., Model flames in the Boussinesq limit: the effects of feedback, Phys. Rev. E67 (2003) 066305. MR1995905
  35. [35] Volpert V.A., Volpert A.I., Location of spectrum and stability of solutions for monotone parabolic system, Adv. Differential Equations2 (1997) 811-830. Zbl1023.35517MR1751428
  36. [36] Volpert V.A., Volpert A.I., Existence and stability of multidimensional travelling waves in the monostable case, Israel J. Math.110 (1999) 269-292. Zbl0929.35064MR1750434
  37. [37] Volpert V.A., Volpert A.I., Spectrum of elliptic operators and stability of travelling waves, Asymptotic Anal.23 (2000) 111-134. Zbl0952.35081MR1771147
  38. [38] B. Win, Ph.D. thesis, University of Chicago, 2004. 
  39. [39] Xin J., Existence of planar flame fronts in convective–diffusive periodic media, Arch. Rational Mech. Anal.121 (1992) 205-233. Zbl0764.76074MR1188981
  40. [40] Xin J., Existence and nonexistence of travelling waves and reaction–diffusion front propagation in periodic media, J. Statist. Phys.73 (1993) 893-926. Zbl1102.35340MR1251222
  41. [41] Xin J., Analysis and modelling of front propagation in heterogeneous media, SIAM Rev.42 (2000) 161-230. Zbl0951.35060MR1778352
  42. [42] Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M., The Mathematical Theory of Combustion and Explosions, Translated from the Russian by Donald H. McNeill, Consultants Bureau [Plenum], New York, 1985. MR781350

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.