Essential dynamics for Lorenz maps on the real line and the lexicographical world
Rafael Labarca; Carlos Gustavo Moreira
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 5, page 683-694
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLabarca, Rafael, and Moreira, Carlos Gustavo. "Essential dynamics for Lorenz maps on the real line and the lexicographical world." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 683-694. <http://eudml.org/doc/78707>.
@article{Labarca2006,
author = {Labarca, Rafael, Moreira, Carlos Gustavo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {essential dynamics; lexicographical world; Hausdorff dimension; entropy},
language = {eng},
number = {5},
pages = {683-694},
publisher = {Elsevier},
title = {Essential dynamics for Lorenz maps on the real line and the lexicographical world},
url = {http://eudml.org/doc/78707},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Labarca, Rafael
AU - Moreira, Carlos Gustavo
TI - Essential dynamics for Lorenz maps on the real line and the lexicographical world
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 683
EP - 694
LA - eng
KW - essential dynamics; lexicographical world; Hausdorff dimension; entropy
UR - http://eudml.org/doc/78707
ER -
References
top- [1] Brucks K.M., Misiurewicz M., Tresser Ch., Monotonicity properties of the family of trapezoidals maps, Comm. Math. Phys.137 (1991) 1-12. Zbl0721.58017MR1099253
- [2] Campbell D.K., Galeeva R., Tresser Ch., Uherka D.J., Piecewise linear models for the quasiperiodic transition to chaos, Chaos6 (2) (1996) 121-154. Zbl1055.37532MR1393554
- [3] Furstenberg H., Disjointness in ergodic theory, Math. Systems Theory1 (1969) 1-49. Zbl0146.28502MR213508
- [4] Galeeva R., Martens M., Tresser Ch., Inducing, slopes and conjugacy classes, Israel J. Math.99 (1997) 123-147. Zbl0889.58031MR1469090
- [5] Gambaudo J.M., Tresser Ch., Dynamique régulière ou chaotique. Applications du cercle ou l'intervalle ayant une discontinuité, C. R. Acad. Soc. Paris, Sér. I300 (10) (1985) 311-313. Zbl0595.58031MR786907
- [6] Glendinning P., Sparrow C., Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D62 (1993) 22-50. Zbl0783.58046MR1207415
- [7] Guckenheimer J., A strange, strange attractor, in: Marsden J.E., McCracken M. (Eds.), Hopf Bifurcations and its Applications, Springer-Verlag, Berlin, 1976, pp. 368-381. MR494309
- [8] Guckenheimer J., Williams R.F., Structural stability of Lorenz attractors, Publ. Math. IHES50 (1979) 59-72. Zbl0436.58018MR556582
- [9] Hubbard J.H., Sparrow C.T., The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math.XLIII (1990) 431-443. Zbl0714.58041MR1047331
- [10] R. Labarca, C.G. Moreira, Bifurcations of the essential dynamics of Lorenz maps and the application to Lorenz like flows: contributions to the study of the contracting case, Preprint, 2003. Zbl0991.37017
- [11] Labarca R., Moreira C.G., Bifurcations of the essential dynamics of Lorenz maps and the application to Lorenz like flows: contributions to the study of the expanding case, Bol. Soc. Bras. Mat. (N.S.)32 (2) (2001) 107-144. Zbl0991.37017MR1860864
- [12] Labarca R., Moreira C.G., Bifurcation of the essential dynamics of Lorenz maps on the real line and the bifurcation scenario for the lineal family, Sci. Ser. A Math. Sci. (N.S.)7 (2001) 13-29. Zbl1160.37355MR1927206
- [13] Lorenz E.N., Deterministic non-periodic flow, J. Atmos. Sci.20 (1963) 130-141.
- [14] MacKay R.S., Tresser Ch., Boundary of topological chaos for bimodal maps of the interval, J. London Math. Soc. (2)37 (1988) 164-181. Zbl0608.54016MR921755
- [15] MacKay R.S., Tresser Ch., Some flesh on the skeleton: the bifurcation structure of bimodals maps, Physica D27 (1987) 412-422. Zbl0626.58038MR913688
- [16] de Melo W., Van Strien S., One-Dimensional Dynamics, Springer-Verlag, 1993. Zbl0791.58003MR1239171
- [17] Misiurewicz M., Szlenk W., Entropy of piecewise monotone mappings, Studia Math.67 (1) (1980) 45-63. Zbl0445.54007MR579440
- [18] C. Moreira, Geometric properties of the Markov and Lagrange spectra, Preprint IMPA, 2004.
- [19] Otero-Espinar M.V., Tresser Ch., Global complexity and essential simplicity: a conjectural picture of the boundary of chaos for smooth endomorphisms of the interval, Physica D39 (1989) 163-168. Zbl0696.58033MR1028713
- [20] Rand D., The topological classification of Lorenz attractors, Math. Proc. Cambridge Philos. Soc.83 (3) (1978) 451-460. Zbl0375.58015MR481632
- [21] Rhodes F., Kneading of Lorenz type for intervals and product spaces, Math. Proc. Cambridge Philos. Soc.89 (1) (1981) 167-179. Zbl0456.58017MR591983
- [22] Ringland J., Tresser Ch., A genealogy for finite kneading sequences of bimodal maps on the interval, TAMS347 (12) (1995) 4599-4624. Zbl0849.54033MR1311914
- [23] Tresser Ch., Nouveaux types de transitions vers une entropie topologique positive, C. R. Acad. Paris, Sér. I296 (1983) 729-732. Zbl0528.58032MR706669
- [24] Tresser Ch., Williams R.F., Splitting words and Lorenz braids, Physica D62 (1993) 15-21. Zbl0783.58041MR1207414
- [25] Urbański M., On Hausdorff dimension of invariant sets for expanding maps of a circle, Ergodic Theory Dynam. Systems6 (1986) 295-309. Zbl0631.58019MR857203
- [26] Williams R.F., The structure of Lorenz attractors, in: Bernard P., Ratiu T. (Eds.), Turbulence Seminar Berkeley 1976/1977, Springer-Verlag, New York, 1977, pp. 94-112. MR461581
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.