Multi solitary waves for nonlinear Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 849-864
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMartel, Yvan, and Merle, Frank. "Multi solitary waves for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 849-864. <http://eudml.org/doc/78716>.
@article{Martel2006,
author = {Martel, Yvan, Merle, Frank},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; multi solitary waves; asymptotic behaviour},
language = {eng},
number = {6},
pages = {849-864},
publisher = {Elsevier},
title = {Multi solitary waves for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78716},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Martel, Yvan
AU - Merle, Frank
TI - Multi solitary waves for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 849
EP - 864
LA - eng
KW - nonlinear Schrödinger equations; multi solitary waves; asymptotic behaviour
UR - http://eudml.org/doc/78716
ER -
References
top- [1] Berestycki H., Lions P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [2] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
- [3] Cazenave T., Weissler F., The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal.14 (1990) 807-836. Zbl0706.35127MR1055532
- [4] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [5] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal.32 (1979) 1-32. Zbl0396.35028MR533218
- [6] Kwong M.K., Uniqueness of positive solutions of in , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
- [7] Mariş M., Existence of nonstationary bubbles in higher dimension, J. Math. Pures Appl.81 (2002) 1207-1239. Zbl1040.35116MR1952162
- [8] Martel Y., Asymptotic N-soliton-like solutions of the generalized critical and subcritical Korteweg–de Vries equations, Amer. J. Math.127 (2005) 1103-1140. Zbl1090.35158MR2170139
- [9] Martel Y., Merle F., Asymptotic stability of solitons for subcritical gKdV equations revisited, Nonlinearity18 (2005) 55-80. Zbl1064.35171MR2109467
- [10] Martel Y., Merle F., Tsai T.-P., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys.231 (2002) 347-373. Zbl1017.35098MR1946336
- [11] Y. Martel, F. Merle, T.-P. Tsai, Stability in of the sum ofK solitary waves for some nonlinear Schrödinger equations in one and two space dimensions, Duke Math. J., in press. Zbl1099.35134MR2228459
- [12] McLeod K., Uniqueness of positive radial solutions of in . II, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034MR1201323
- [13] Merle F., Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys.129 (1990) 223-240. Zbl0707.35021MR1048692
- [14] Tsutsumi Y., -solutions for nonlinear Schrödinger equations and nonlinear group, Funkcial. Ekvac.30 (1987) 115-125. Zbl0638.35021MR915266
- [15] Weinstein M.I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974
- [16] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
- [17] Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP34 (1972) 62-69. MR406174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.