Multi solitary waves for nonlinear Schrödinger equations

Yvan Martel; Frank Merle

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 849-864
  • ISSN: 0294-1449

How to cite

top

Martel, Yvan, and Merle, Frank. "Multi solitary waves for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 849-864. <http://eudml.org/doc/78716>.

@article{Martel2006,
author = {Martel, Yvan, Merle, Frank},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; multi solitary waves; asymptotic behaviour},
language = {eng},
number = {6},
pages = {849-864},
publisher = {Elsevier},
title = {Multi solitary waves for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78716},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Martel, Yvan
AU - Merle, Frank
TI - Multi solitary waves for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 849
EP - 864
LA - eng
KW - nonlinear Schrödinger equations; multi solitary waves; asymptotic behaviour
UR - http://eudml.org/doc/78716
ER -

References

top
  1. [1] Berestycki H., Lions P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  2. [2] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  3. [3] Cazenave T., Weissler F., The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal.14 (1990) 807-836. Zbl0706.35127MR1055532
  4. [4] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
  5. [5] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal.32 (1979) 1-32. Zbl0396.35028MR533218
  6. [6] Kwong M.K., Uniqueness of positive solutions of Δ u + u p = 0 in R n , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  7. [7] Mariş M., Existence of nonstationary bubbles in higher dimension, J. Math. Pures Appl.81 (2002) 1207-1239. Zbl1040.35116MR1952162
  8. [8] Martel Y., Asymptotic N-soliton-like solutions of the generalized critical and subcritical Korteweg–de Vries equations, Amer. J. Math.127 (2005) 1103-1140. Zbl1090.35158MR2170139
  9. [9] Martel Y., Merle F., Asymptotic stability of solitons for subcritical gKdV equations revisited, Nonlinearity18 (2005) 55-80. Zbl1064.35171MR2109467
  10. [10] Martel Y., Merle F., Tsai T.-P., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys.231 (2002) 347-373. Zbl1017.35098MR1946336
  11. [11] Y. Martel, F. Merle, T.-P. Tsai, Stability in H 1 of the sum ofK solitary waves for some nonlinear Schrödinger equations in one and two space dimensions, Duke Math. J., in press. Zbl1099.35134MR2228459
  12. [12] McLeod K., Uniqueness of positive radial solutions of Δ u + f u = 0 in R n . II, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034MR1201323
  13. [13] Merle F., Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys.129 (1990) 223-240. Zbl0707.35021MR1048692
  14. [14] Tsutsumi Y., L 2 -solutions for nonlinear Schrödinger equations and nonlinear group, Funkcial. Ekvac.30 (1987) 115-125. Zbl0638.35021MR915266
  15. [15] Weinstein M.I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985) 472-491. Zbl0583.35028MR783974
  16. [16] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
  17. [17] Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP34 (1972) 62-69. MR406174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.