On quasiconvex hulls in symmetric matrices
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 865-876
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSzékelyhidi, László. "On quasiconvex hulls in symmetric $2\times 2$ matrices." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 865-876. <http://eudml.org/doc/78717>.
@article{Székelyhidi2006,
author = {Székelyhidi, László},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Gradient Young measures; Quasiconvex Hull; Maximum principle},
language = {eng},
number = {6},
pages = {865-876},
publisher = {Elsevier},
title = {On quasiconvex hulls in symmetric $2\times 2$ matrices},
url = {http://eudml.org/doc/78717},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Székelyhidi, László
TI - On quasiconvex hulls in symmetric $2\times 2$ matrices
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 865
EP - 876
LA - eng
KW - Gradient Young measures; Quasiconvex Hull; Maximum principle
UR - http://eudml.org/doc/78717
ER -
References
top- [1] Astala K., Faraco D., Quasiregular mappings and Young measures, Proc. Roy. Soc. Edinburgh Sect. A132 (5) (2002) 1045-1056. Zbl1016.30016MR1938712
- [2] K. Astala, T. Iwaniec, G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, J. Reine Angew. Math., in press. Zbl1147.35021
- [3] Ball J.M., A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transitions (Nice, 1988), Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207-215. Zbl0991.49500MR1036070
- [4] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation. Zbl06504065
- [5] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
- [6] B. Bojarski, L. D'Onofrio, T. Iwaniec, C. Sbordone, G-closed classes of elliptic operators in the complex plane, in press. Zbl1139.30311
- [7] Caffarelli L.A., Cabré X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
- [8] Cardaliaguet P., Tahraoui R., Sur l’équivalence de la 1-rang convexité et de la polyconvexité des ensembles isotropiques de , C. R. Acad. Sci. Paris Sér. I Math.331 (11) (2000) 851-856. Zbl1064.26005MR1806421
- [9] Chipot M., Kinderlehrer D., Equilibrium configurations of crystals, Arch. Rational Mech. Anal.103 (1988) 237-277. Zbl0673.73012MR955934
- [10] Conti S., De Lellis C., Müller S., Romeo M., Polyconvexity equals rank-one convexity for connected isotropic sets in , C. R. Math. Acad. Sci. Paris, Ser. I337 (4) (2003) 233-238. Zbl1050.49010MR2009113
- [11] Dacorogna B., Tanteri C., Implicit partial differential equations and the constraints of nonlinear elasticity, J. Math. Pures Appl. (9)81 (4) (2002) 311-341. Zbl1068.74007MR1967352
- [12] Dolzmann G., Variational Methods for Crystalline Microstructure — Analysis and Computation, Lecture Notes in Math., vol. 1803, Springer-Verlag, Berlin, 2003. Zbl1016.74002
- [13] Faraco D., Zhong X., Quasiconvex functions and Hessian equations, Arch. Rational Mech. Anal.168 (3) (2003) 245-252. Zbl1047.49017MR1991516
- [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag, Berlin, 2001, (Reprint of the 1998 edition). Zbl1042.35002MR1814364
- [15] Kinderlehrer D., Pedregal P., Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal.115 (1991) 329-365. Zbl0754.49020MR1120852
- [16] Matos J.P., Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math.3 (1) (1992) 31-54. Zbl0751.73003MR1156593
- [17] Müller S., Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Notices20 (1999) 1087-1095. Zbl1055.49506MR1728018
- [18] Müller S., Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210. Zbl0968.74050MR1731640
- [19] V. Šverák, On regularity for the Monge–Ampère equations, Preprint, Heriot-Watt University, 1991.
- [20] Šverák V., New examples of quasiconvex functions, Arch. Rational Mech. Anal.119 (4) (1992) 293-300. Zbl0823.26009MR1179688
- [21] Székelyhidi L., Rank-one convex hulls in , Calc. Var. Partial Differential Equations22 (3) (2005) 253-281. Zbl1104.49013MR2118899
- [22] Tartar L., Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, MA, 1979, pp. 136-212. Zbl0437.35004MR584398
- [23] Zhang K., On separation of gradient Young measures, Calc. Var. Partial Differential Equations17 (1) (2003) 85-103. Zbl1036.49025MR1979117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.