On quasiconvex hulls in symmetric 2 × 2 matrices

László Székelyhidi

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 865-876
  • ISSN: 0294-1449

How to cite

top

Székelyhidi, László. "On quasiconvex hulls in symmetric $2\times 2$ matrices." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 865-876. <http://eudml.org/doc/78717>.

@article{Székelyhidi2006,
author = {Székelyhidi, László},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Gradient Young measures; Quasiconvex Hull; Maximum principle},
language = {eng},
number = {6},
pages = {865-876},
publisher = {Elsevier},
title = {On quasiconvex hulls in symmetric $2\times 2$ matrices},
url = {http://eudml.org/doc/78717},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Székelyhidi, László
TI - On quasiconvex hulls in symmetric $2\times 2$ matrices
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 865
EP - 876
LA - eng
KW - Gradient Young measures; Quasiconvex Hull; Maximum principle
UR - http://eudml.org/doc/78717
ER -

References

top
  1. [1] Astala K., Faraco D., Quasiregular mappings and Young measures, Proc. Roy. Soc. Edinburgh Sect. A132 (5) (2002) 1045-1056. Zbl1016.30016MR1938712
  2. [2] K. Astala, T. Iwaniec, G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, J. Reine Angew. Math., in press. Zbl1147.35021
  3. [3] Ball J.M., A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transitions (Nice, 1988), Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207-215. Zbl0991.49500MR1036070
  4. [4] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation. Zbl06504065
  5. [5] Ball J.M., James R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.100 (1987) 13-52. Zbl0629.49020MR906132
  6. [6] B. Bojarski, L. D'Onofrio, T. Iwaniec, C. Sbordone, G-closed classes of elliptic operators in the complex plane, in press. Zbl1139.30311
  7. [7] Caffarelli L.A., Cabré X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
  8. [8] Cardaliaguet P., Tahraoui R., Sur l’équivalence de la 1-rang convexité et de la polyconvexité des ensembles isotropiques de R 2 × 2 , C. R. Acad. Sci. Paris Sér. I Math.331 (11) (2000) 851-856. Zbl1064.26005MR1806421
  9. [9] Chipot M., Kinderlehrer D., Equilibrium configurations of crystals, Arch. Rational Mech. Anal.103 (1988) 237-277. Zbl0673.73012MR955934
  10. [10] Conti S., De Lellis C., Müller S., Romeo M., Polyconvexity equals rank-one convexity for connected isotropic sets in M 2 × 2 , C. R. Math. Acad. Sci. Paris, Ser. I337 (4) (2003) 233-238. Zbl1050.49010MR2009113
  11. [11] Dacorogna B., Tanteri C., Implicit partial differential equations and the constraints of nonlinear elasticity, J. Math. Pures Appl. (9)81 (4) (2002) 311-341. Zbl1068.74007MR1967352
  12. [12] Dolzmann G., Variational Methods for Crystalline Microstructure — Analysis and Computation, Lecture Notes in Math., vol. 1803, Springer-Verlag, Berlin, 2003. Zbl1016.74002
  13. [13] Faraco D., Zhong X., Quasiconvex functions and Hessian equations, Arch. Rational Mech. Anal.168 (3) (2003) 245-252. Zbl1047.49017MR1991516
  14. [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag, Berlin, 2001, (Reprint of the 1998 edition). Zbl1042.35002MR1814364
  15. [15] Kinderlehrer D., Pedregal P., Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal.115 (1991) 329-365. Zbl0754.49020MR1120852
  16. [16] Matos J.P., Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math.3 (1) (1992) 31-54. Zbl0751.73003MR1156593
  17. [17] Müller S., Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Notices20 (1999) 1087-1095. Zbl1055.49506MR1728018
  18. [18] Müller S., Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210. Zbl0968.74050MR1731640
  19. [19] V. Šverák, On regularity for the Monge–Ampère equations, Preprint, Heriot-Watt University, 1991. 
  20. [20] Šverák V., New examples of quasiconvex functions, Arch. Rational Mech. Anal.119 (4) (1992) 293-300. Zbl0823.26009MR1179688
  21. [21] Székelyhidi L., Rank-one convex hulls in R 2 × 2 , Calc. Var. Partial Differential Equations22 (3) (2005) 253-281. Zbl1104.49013MR2118899
  22. [22] Tartar L., Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, MA, 1979, pp. 136-212. Zbl0437.35004MR584398
  23. [23] Zhang K., On separation of gradient Young measures, Calc. Var. Partial Differential Equations17 (1) (2003) 85-103. Zbl1036.49025MR1979117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.