Planar binary trees and perturbative calculus of observables in classical field theory

Dikanaina Harrivel

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 891-909
  • ISSN: 0294-1449

How to cite

top

Harrivel, Dikanaina. "Planar binary trees and perturbative calculus of observables in classical field theory." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 891-909. <http://eudml.org/doc/78719>.

@article{Harrivel2006,
author = {Harrivel, Dikanaina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial differential equation; Klein-Gordon equation; planar trees; perturbation expansion; conserved quantities},
language = {eng},
number = {6},
pages = {891-909},
publisher = {Elsevier},
title = {Planar binary trees and perturbative calculus of observables in classical field theory},
url = {http://eudml.org/doc/78719},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Harrivel, Dikanaina
TI - Planar binary trees and perturbative calculus of observables in classical field theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 891
EP - 909
LA - eng
KW - partial differential equation; Klein-Gordon equation; planar trees; perturbation expansion; conserved quantities
UR - http://eudml.org/doc/78719
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Pure Appl. Math., Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] Bahns D., Unitary quantum field theory on the noncommutative Minkowski space, hep-th/0212266v2. 
  3. [3] Brezis H., Analyse fonctionnelle, Masson, 1983. Zbl0511.46001MR697382
  4. [4] Brouder C., On the trees of quantum fields, Eur. Phys. J. C12 (2000) 535-546, hep-th/9906111. Zbl0980.11020
  5. [5] Brouder C., Butcher series and renormalization, BIT19 (2004) 714-741, hep-th/0003202. MR2106008
  6. [6] Brouder C., Frabetti A., Renormalization of QED with planar binary trees, Eur. Phys. J. C19 (2001) 714-741, hep-th/0003202. Zbl1099.81568
  7. [7] Duquesne T., Le Gall J.-F., Random Trees, Lévy Processes and Spatial Branching Processes, Astérisque, vol. 281, 2002. Zbl1037.60074MR1954248
  8. [8] Frabetti A., Simplicial properties of the set of planar binary trees, J. Algebraic Combin. (1999). Zbl0989.17001MR1817703
  9. [9] Graham R., Knuth D., Patashnik O., Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York, 1989. Zbl0668.00003MR1397498
  10. [10] D. Harrivel, Non linear control and perturbative expansion using Planar Trees, 2005, in press. 
  11. [11] Hélein F., Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, Contemp. Math.350 (2004) 127-147. Zbl1069.58011MR2082395
  12. [12] Hélein F., Kouneiher J., Finite dimensional Hamiltonian formalism for gauge and quantum field theory, J. Math. Phys.43 (2002) 5. Zbl1059.70019MR1893674
  13. [13] F. Hélein, J. Kouneiher, Lepage–Dedecker general multisymplectic formalisms, Adv. Theor. Math. Phys. (2004), in press. Zbl1115.70017
  14. [14] Itzykson C., Zuber J.-B., Quantum Field Theory, McGraw-Hill International Book Co., New York, 1980. Zbl0453.05035MR585517
  15. [15] Kijowski J., A finite dimensional canonical formalism in the classical field theories, Comm. Math. Phys.30 (1973) 99-128. MR334772
  16. [16] Le Gall J.-F., Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Boston, 1999. Zbl0938.60003MR1714707
  17. [17] Rudin W., Analyse Fonctionnelle, Ediscience international, 1995. 
  18. [18] Sedgewick R., Flajolet P., An Introduction to the Analysis of Algorithms, Addison Wesley Professional, New York, 1995. Zbl0841.68059
  19. [19] W.M. Tulczyjew, Geometry of phase space. Seminar in Warsaw, 1968. 
  20. [20] van der Lann P., Some Hopf algebras of trees, math.QA/0106244. 

NotesEmbed ?

top

You must be logged in to post comments.