Planar binary trees and perturbative calculus of observables in classical field theory
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 891-909
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHarrivel, Dikanaina. "Planar binary trees and perturbative calculus of observables in classical field theory." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 891-909. <http://eudml.org/doc/78719>.
@article{Harrivel2006,
author = {Harrivel, Dikanaina},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial differential equation; Klein-Gordon equation; planar trees; perturbation expansion; conserved quantities},
language = {eng},
number = {6},
pages = {891-909},
publisher = {Elsevier},
title = {Planar binary trees and perturbative calculus of observables in classical field theory},
url = {http://eudml.org/doc/78719},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Harrivel, Dikanaina
TI - Planar binary trees and perturbative calculus of observables in classical field theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 891
EP - 909
LA - eng
KW - partial differential equation; Klein-Gordon equation; planar trees; perturbation expansion; conserved quantities
UR - http://eudml.org/doc/78719
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Pure Appl. Math., Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] Bahns D., Unitary quantum field theory on the noncommutative Minkowski space, hep-th/0212266v2.
- [3] Brezis H., Analyse fonctionnelle, Masson, 1983. Zbl0511.46001MR697382
- [4] Brouder C., On the trees of quantum fields, Eur. Phys. J. C12 (2000) 535-546, hep-th/9906111. Zbl0980.11020
- [5] Brouder C., Butcher series and renormalization, BIT19 (2004) 714-741, hep-th/0003202. MR2106008
- [6] Brouder C., Frabetti A., Renormalization of QED with planar binary trees, Eur. Phys. J. C19 (2001) 714-741, hep-th/0003202. Zbl1099.81568
- [7] Duquesne T., Le Gall J.-F., Random Trees, Lévy Processes and Spatial Branching Processes, Astérisque, vol. 281, 2002. Zbl1037.60074MR1954248
- [8] Frabetti A., Simplicial properties of the set of planar binary trees, J. Algebraic Combin. (1999). Zbl0989.17001MR1817703
- [9] Graham R., Knuth D., Patashnik O., Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York, 1989. Zbl0668.00003MR1397498
- [10] D. Harrivel, Non linear control and perturbative expansion using Planar Trees, 2005, in press.
- [11] Hélein F., Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, Contemp. Math.350 (2004) 127-147. Zbl1069.58011MR2082395
- [12] Hélein F., Kouneiher J., Finite dimensional Hamiltonian formalism for gauge and quantum field theory, J. Math. Phys.43 (2002) 5. Zbl1059.70019MR1893674
- [13] F. Hélein, J. Kouneiher, Lepage–Dedecker general multisymplectic formalisms, Adv. Theor. Math. Phys. (2004), in press. Zbl1115.70017
- [14] Itzykson C., Zuber J.-B., Quantum Field Theory, McGraw-Hill International Book Co., New York, 1980. Zbl0453.05035MR585517
- [15] Kijowski J., A finite dimensional canonical formalism in the classical field theories, Comm. Math. Phys.30 (1973) 99-128. MR334772
- [16] Le Gall J.-F., Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Boston, 1999. Zbl0938.60003MR1714707
- [17] Rudin W., Analyse Fonctionnelle, Ediscience international, 1995.
- [18] Sedgewick R., Flajolet P., An Introduction to the Analysis of Algorithms, Addison Wesley Professional, New York, 1995. Zbl0841.68059
- [19] W.M. Tulczyjew, Geometry of phase space. Seminar in Warsaw, 1968.
- [20] van der Lann P., Some Hopf algebras of trees, math.QA/0106244.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.