A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

A. El Soufi; M. Jazar; R. Monneau

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 17-39
  • ISSN: 0294-1449

How to cite


El Soufi, A., Jazar, M., and Monneau, R.. "A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 17-39. <http://eudml.org/doc/78726>.

author = {El Soufi, A., Jazar, M., Monneau, R.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up; global existence; Neumann heat kernel; comparison principle},
language = {eng},
number = {1},
pages = {17-39},
publisher = {Elsevier},
title = {A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions},
url = {http://eudml.org/doc/78726},
volume = {24},
year = {2007},

AU - El Soufi, A.
AU - Jazar, M.
AU - Monneau, R.
TI - A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 17
EP - 39
LA - eng
KW - blow-up; global existence; Neumann heat kernel; comparison principle
UR - http://eudml.org/doc/78726
ER -


  1. [1] Alberti G., Variational models for phase transitions, an approach via Γ-convergence, in: Buttazzo G., (Eds.), Calculus of Variations and Partial Differential Equations. Topics on Geometrical Evolution Problems and Degree Theory. Based on a Summer School, Pisa, Italy, September 1996, Springer, Berlin, 2000, pp. 95-114. Zbl0957.35017
  2. [2] Amann H., Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations72 (1988) 201-269. Zbl0658.34011MR932367
  3. [3] Avinyo A., Mora X., Geometric inequalities of Cheeger type for the first positive eigenvalue of the n-dimensional free membrane problem, Ital. J. Pure Appl. Math.2 (1997) 133-140. Zbl0948.35089MR1770591
  4. [4] Ball J., Remarks on blow-up and non-existence theorems for nonlinear evolution equations, Quart. J. Math. Oxford28 (1977) 473-486. Zbl0377.35037MR473484
  5. [5] Budd C., Dold B., Stuart A., Blow-up in a partial differential equation with conserved first integral, SIAM J. Appl. Math.53 (3) (1993) 718-742. Zbl0784.35009MR1218381
  6. [6] Budd C., Dold B., Stuart A., Blow-up in a system of partial differential equations with conserved first integral II. Problems with convection, SIAM J. Appl. Math.54 (3) (1994) 610-640. Zbl0928.35081MR1274219
  7. [7] Buser P., On Cheeger’s inequality λ 1 h 2 / 4 , in: Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., vol. XXXVI, Amer. Math. Soc., 1980, pp. 29-77. Zbl0432.58024MR573428
  8. [8] Cazenave T., Haraux A., Introduction aux problèmes d'évolutions semi-linéaires, Ellipses, Paris, 1990. Zbl0786.35070MR1299976
  9. [9] Dal Maso G., An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, Basel, 1993. Zbl0816.49001
  10. [10] Davies E.B., Heat Kernels and Spectral Theory, Cambridge Tracts in Math, vol. 92, Cambridge University Press, Cambridge, 1990. Zbl0699.35006MR1103113
  11. [11] De Giorgi E., New problems in Gamma-convergence and G-convergence, in: Free Boundary Problems, Proc. Semin. Pavia, 1979, vol. II, 1980, pp. 183-194. Zbl0465.35002
  12. [12] Elliott C.M., The Cahn–Hilliard model for the kinetics of phase separation, in: Rodrigues J. (Ed.), Mathematical Models for Phase Change Problems, Birkhäuser-Verlag, Basel, 1989. Zbl0692.73003
  13. [13] Fujita H., On the blowing-up of solutions of the Cauchy problem for u t = Δ u + u 1 + α , J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002MR214914
  14. [14] Furter J., Grinfeld M., Local vs. non-local interactions in population dynamics, J. Math. Biol.27 (1989) 65-80. Zbl0714.92012MR984226
  15. [15] Giga Y., Kohn R.V., Characterizing blow-up using similarity variables, Indiana Univ. Math. J.36 (1987) 1-40. Zbl0601.35052MR876989
  16. [16] Gilkey P., Branson T., The asymptotics of the Laplacian on a manifold with boundary, Comm. Partial Differential Equations15 (2) (1990) 245-272. Zbl0721.58052MR1032631
  17. [17] Giusti E., Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  18. [18] Herrero M.A., Velázquez J.J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (2) (1993) 131-189. Zbl0813.35007MR1220032
  19. [19] Hu B., Yin H.M., Semi linear parabolic equations with prescribed energy, Rend. Circ. Math. Palermo44 (1995) 479-505. Zbl0856.35063MR1388759
  20. [20] Leray J., Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. J.63 (1934) 193-248. MR1555394JFM60.0726.05
  21. [21] Levine H.A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form P u t = - A u + F u , Arch. Rational Mech. Anal.51 (1973) 371-386. Zbl0278.35052MR348216
  22. [22] Lieberman G.M., Second Order Parabolic Partial Differential Equations, World Scientific, 1996. Zbl0884.35001MR1465184
  23. [23] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser-Verlag, 1995. Zbl0816.35001MR1329547
  24. [24] Merle F., Zaag H., A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann.316 (2000) 103-137. Zbl0939.35086MR1735081
  25. [25] Meyer D., Minoration de la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord, Ann. Inst. Fourier (Grenoble)36 (2) (1986) 113-125. Zbl0582.58036MR850747
  26. [26] Modica L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal.98 (2) (1987) 123-142. Zbl0616.76004MR866718
  27. [27] Modica L., Mortola S., Un esempio di Γ-convergenza, Boll. Un. Mat. Ital. B (5)14 (1977) 285-299. Zbl0356.49008
  28. [28] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, 1983. Zbl0516.47023MR710486
  29. [29] Rubinstein J., Sternberg P., Non-local reaction–diffusion equations and nucleation, IMA J. Appl. Math.48 (3) (1992) 249-264. Zbl0763.35051
  30. [30] Souplet Ph., Blow-up in nonlocal reaction–diffusion equations, SIAM J. Math. Anal.29 (6) (1998) 1301-1334. Zbl0909.35073
  31. [31] Souplet Ph., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations153 (1999) 374-406. Zbl0923.35077MR1683627
  32. [32] Souplet Ph., Recent results and open problems on parabolic equations with gradient nonlinearities, E.J.D.E.10 (2001) 1-19. Zbl0982.35054MR1824790
  33. [33] Stewart H.B., Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc.259 (1) (1980) 299-310. Zbl0451.35033MR561838
  34. [34] Szegö G., Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal.3 (1954) 343-356. Zbl0055.08802MR61749
  35. [35] Wang J., Global heat kernel estimates, Pacific J. Math.178 (2) (1997) 377-398. Zbl0882.35018MR1447421
  36. [36] Wang M., Wang Y., Properties of positive solutions for non-local reaction–diffusion problems, Math. Methods Appl. Sci.19 (1996) 1141-1156. Zbl0990.35066
  37. [37] Weinberger H.F., An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal.5 (1956) 633-636. Zbl0071.09902MR79286
  38. [38] H. Zaag, Sur la description des formations de singularités pour l'équation de la chaleur non linéaire, PhD Thesis, Univ. of Cergy-Pontoise, France, 1998. 
  39. [39] Zaag H., On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 505-542. Zbl1012.35039MR1922468

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.