A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
A. El Soufi; M. Jazar; R. Monneau
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 1, page 17-39
 - ISSN: 0294-1449
 
Access Full Article
topHow to cite
topEl Soufi, A., Jazar, M., and Monneau, R.. "A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 17-39. <http://eudml.org/doc/78726>.
@article{ElSoufi2007,
	author = {El Soufi, A., Jazar, M., Monneau, R.},
	journal = {Annales de l'I.H.P. Analyse non linéaire},
	keywords = {blow-up; global existence; Neumann heat kernel; comparison principle},
	language = {eng},
	number = {1},
	pages = {17-39},
	publisher = {Elsevier},
	title = {A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions},
	url = {http://eudml.org/doc/78726},
	volume = {24},
	year = {2007},
}
TY  - JOUR
AU  - El Soufi, A.
AU  - Jazar, M.
AU  - Monneau, R.
TI  - A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2007
PB  - Elsevier
VL  - 24
IS  - 1
SP  - 17
EP  - 39
LA  - eng
KW  - blow-up; global existence; Neumann heat kernel; comparison principle
UR  - http://eudml.org/doc/78726
ER  - 
References
top- [1] Alberti G., Variational models for phase transitions, an approach via Γ-convergence, in: Buttazzo G., (Eds.), Calculus of Variations and Partial Differential Equations. Topics on Geometrical Evolution Problems and Degree Theory. Based on a Summer School, Pisa, Italy, September 1996, Springer, Berlin, 2000, pp. 95-114. Zbl0957.35017
 - [2] Amann H., Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations72 (1988) 201-269. Zbl0658.34011MR932367
 - [3] Avinyo A., Mora X., Geometric inequalities of Cheeger type for the first positive eigenvalue of the n-dimensional free membrane problem, Ital. J. Pure Appl. Math.2 (1997) 133-140. Zbl0948.35089MR1770591
 - [4] Ball J., Remarks on blow-up and non-existence theorems for nonlinear evolution equations, Quart. J. Math. Oxford28 (1977) 473-486. Zbl0377.35037MR473484
 - [5] Budd C., Dold B., Stuart A., Blow-up in a partial differential equation with conserved first integral, SIAM J. Appl. Math.53 (3) (1993) 718-742. Zbl0784.35009MR1218381
 - [6] Budd C., Dold B., Stuart A., Blow-up in a system of partial differential equations with conserved first integral II. Problems with convection, SIAM J. Appl. Math.54 (3) (1994) 610-640. Zbl0928.35081MR1274219
 - [7] Buser P., On Cheeger’s inequality , in: Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., vol. XXXVI, Amer. Math. Soc., 1980, pp. 29-77. Zbl0432.58024MR573428
 - [8] Cazenave T., Haraux A., Introduction aux problèmes d'évolutions semi-linéaires, Ellipses, Paris, 1990. Zbl0786.35070MR1299976
 - [9] Dal Maso G., An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, Basel, 1993. Zbl0816.49001
 - [10] Davies E.B., Heat Kernels and Spectral Theory, Cambridge Tracts in Math, vol. 92, Cambridge University Press, Cambridge, 1990. Zbl0699.35006MR1103113
 - [11] De Giorgi E., New problems in Gamma-convergence and G-convergence, in: Free Boundary Problems, Proc. Semin. Pavia, 1979, vol. II, 1980, pp. 183-194. Zbl0465.35002
 - [12] Elliott C.M., The Cahn–Hilliard model for the kinetics of phase separation, in: Rodrigues J. (Ed.), Mathematical Models for Phase Change Problems, Birkhäuser-Verlag, Basel, 1989. Zbl0692.73003
 - [13] Fujita H., On the blowing-up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002MR214914
 - [14] Furter J., Grinfeld M., Local vs. non-local interactions in population dynamics, J. Math. Biol.27 (1989) 65-80. Zbl0714.92012MR984226
 - [15] Giga Y., Kohn R.V., Characterizing blow-up using similarity variables, Indiana Univ. Math. J.36 (1987) 1-40. Zbl0601.35052MR876989
 - [16] Gilkey P., Branson T., The asymptotics of the Laplacian on a manifold with boundary, Comm. Partial Differential Equations15 (2) (1990) 245-272. Zbl0721.58052MR1032631
 - [17] Giusti E., Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
 - [18] Herrero M.A., Velázquez J.J.L., Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (2) (1993) 131-189. Zbl0813.35007MR1220032
 - [19] Hu B., Yin H.M., Semi linear parabolic equations with prescribed energy, Rend. Circ. Math. Palermo44 (1995) 479-505. Zbl0856.35063MR1388759
 - [20] Leray J., Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. J.63 (1934) 193-248. MR1555394JFM60.0726.05
 - [21] Levine H.A., Some nonexistence and instability theorems for solutions of formally parabolic equations of the form , Arch. Rational Mech. Anal.51 (1973) 371-386. Zbl0278.35052MR348216
 - [22] Lieberman G.M., Second Order Parabolic Partial Differential Equations, World Scientific, 1996. Zbl0884.35001MR1465184
 - [23] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser-Verlag, 1995. Zbl0816.35001MR1329547
 - [24] Merle F., Zaag H., A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann.316 (2000) 103-137. Zbl0939.35086MR1735081
 - [25] Meyer D., Minoration de la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord, Ann. Inst. Fourier (Grenoble)36 (2) (1986) 113-125. Zbl0582.58036MR850747
 - [26] Modica L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal.98 (2) (1987) 123-142. Zbl0616.76004MR866718
 - [27] Modica L., Mortola S., Un esempio di Γ-convergenza, Boll. Un. Mat. Ital. B (5)14 (1977) 285-299. Zbl0356.49008
 - [28] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, 1983. Zbl0516.47023MR710486
 - [29] Rubinstein J., Sternberg P., Non-local reaction–diffusion equations and nucleation, IMA J. Appl. Math.48 (3) (1992) 249-264. Zbl0763.35051
 - [30] Souplet Ph., Blow-up in nonlocal reaction–diffusion equations, SIAM J. Math. Anal.29 (6) (1998) 1301-1334. Zbl0909.35073
 - [31] Souplet Ph., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations153 (1999) 374-406. Zbl0923.35077MR1683627
 - [32] Souplet Ph., Recent results and open problems on parabolic equations with gradient nonlinearities, E.J.D.E.10 (2001) 1-19. Zbl0982.35054MR1824790
 - [33] Stewart H.B., Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc.259 (1) (1980) 299-310. Zbl0451.35033MR561838
 - [34] Szegö G., Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal.3 (1954) 343-356. Zbl0055.08802MR61749
 - [35] Wang J., Global heat kernel estimates, Pacific J. Math.178 (2) (1997) 377-398. Zbl0882.35018MR1447421
 - [36] Wang M., Wang Y., Properties of positive solutions for non-local reaction–diffusion problems, Math. Methods Appl. Sci.19 (1996) 1141-1156. Zbl0990.35066
 - [37] Weinberger H.F., An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal.5 (1956) 633-636. Zbl0071.09902MR79286
 - [38] H. Zaag, Sur la description des formations de singularités pour l'équation de la chaleur non linéaire, PhD Thesis, Univ. of Cergy-Pontoise, France, 1998.
 - [39] Zaag H., On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 505-542. Zbl1012.35039MR1922468
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.