Correlations and bounds for stochastic volatility models

P.-L. Lions; M. Musiela

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 1-16
  • ISSN: 0294-1449

How to cite

top

Lions, P.-L., and Musiela, M.. "Correlations and bounds for stochastic volatility models." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 1-16. <http://eudml.org/doc/78727>.

@article{Lions2007,
author = {Lions, P.-L., Musiela, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {log-normal like models},
language = {eng},
number = {1},
pages = {1-16},
publisher = {Elsevier},
title = {Correlations and bounds for stochastic volatility models},
url = {http://eudml.org/doc/78727},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Lions, P.-L.
AU - Musiela, M.
TI - Correlations and bounds for stochastic volatility models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 1
EP - 16
LA - eng
KW - log-normal like models
UR - http://eudml.org/doc/78727
ER -

References

top
  1. [1] Beckers S., The constant elasticity of variance model and its implications for options pricing, J. Finan.35 (1981) 661-673. 
  2. [2] Chesney M., Scott L., Pricing European currency options: a comparison of the modified Black–Scholes model and a random variance model, J. Finan. Quant. Anal.24 (1989) 267-284. 
  3. [3] J.-C. Cox, Notes on options pricing I: constant elasticity of variance diffusions, Working paper, Stanford University, 1977. 
  4. [4] Grünbichler A., Longstaff F.A., Valuing futures and options on volatility, J. Banking Finance20 (1996) 985-1001. 
  5. [5] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1987. Zbl0684.60040MR1011252
  6. [6] Karatzas I., Shreve S., Brownian Motion and Stochastic Calculus, Springer, Berlin, 1988. Zbl0638.60065MR917065
  7. [7] Scott L.O., Option pricing when the variance changes randomly: theory, estimation and an application, J. Finan. Quant. Anal.22 (1987) 419-438. 
  8. [8] Scott L.O., Random-variance option pricing: empirical tests of the model delta–sigma hedging, Adv. Futures Options Res.5 (1991) 113-135. 
  9. [9] Wiggins J.B., Option values under stochastic volatility: theory and empirical estimates, J. Finan. Econom.19 (1987) 351-372. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.