Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary

Giovanna Cerami; Riccardo Molle; Donato Passaseo

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 41-60
  • ISSN: 0294-1449

How to cite

top

Cerami, Giovanna, Molle, Riccardo, and Passaseo, Donato. "Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 41-60. <http://eudml.org/doc/78728>.

@article{Cerami2007,
author = {Cerami, Giovanna, Molle, Riccardo, Passaseo, Donato},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear elliptic problems; unbounded domains; unbounded boundary},
language = {eng},
number = {1},
pages = {41-60},
publisher = {Elsevier},
title = {Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary},
url = {http://eudml.org/doc/78728},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Cerami, Giovanna
AU - Molle, Riccardo
AU - Passaseo, Donato
TI - Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 41
EP - 60
LA - eng
KW - nonlinear elliptic problems; unbounded domains; unbounded boundary
UR - http://eudml.org/doc/78728
ER -

References

top
  1. [1] Bahri A., Li Y.Y., On a min–max procedure for the existence of a positive solution for certain scalar field equations in R N , Rev. Mat. Iberoamericana6 (1/2) (1990) 1-15. Zbl0731.35036
  2. [2] Bahri A., Lions P.L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (3) (1997) 365-413. Zbl0883.35045MR1450954
  3. [3] Bartsch T., Weth T., Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (3) (2005) 259-281. Zbl1114.35068MR2136244
  4. [4] Benci V., Cerami G., Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal.99 (1987) 283-300. Zbl0635.35036MR898712
  5. [5] Berestycki H., Lions P.L., Nonlinear scalar fields equations – I. Existence of a ground-state, Arch. Rational Mech. Anal.82 (1983) 313-346. Zbl0533.35029
  6. [6] Cerami G., Molle R., Multiple positive solutions for singularly perturbed elliptic problems in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (5) (2003) 759-777. Zbl1274.35080MR1995501
  7. [7] Cerami G., Passaseo D., Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with “rich” topology, Nonlinear Anal.18 (2) (1992) 109-119. Zbl0810.35024
  8. [8] Cerami G., Passaseo D., Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains, Nonlinear Anal.24 (11) (1995) 1533-1547. Zbl0845.35026MR1328581
  9. [9] Cerami G., Passaseo D., The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations17 (3) (2003) 257-281. Zbl1290.35050MR1989833
  10. [10] Coffman C.V., Marcus M., Existence theorems for superlinear elliptic Dirichlet problems in exterior domains, in: Nonlinear Functional Analysis and its Applications, Part 1, Berkeley, CA, 1983, Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 271-282. Zbl0596.35048MR843566
  11. [11] Cornea O., Lupton G., Oprea J., Tanré D., Lusternik Schnirelmann Category, American Mathematical Society, Providence, 2003. Zbl1032.55001MR1990857
  12. [12] Esteban M.J., Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings, Nonlinear Anal.7 (4) (1983) 365-379. Zbl0513.35035MR696736
  13. [13] Esteban M.J., Lions P.L., Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A93 (1/2) (1982/83) 1-14. Zbl0506.35035MR688279
  14. [14] Fadell E., Husseini S., Relative category, products and coproducts, Rend. Sem. Mat. Fis. Milano64 (1994) 99-115. Zbl0860.55011MR1397466
  15. [15] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R N , in: Mathematical Analysis and Applications – Part A, Adv. Math. Supplementary Stud., vol. 7-A, Academic Press, 1981, pp. 369-402. Zbl0469.35052
  16. [16] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  17. [17] J. Molina, R. Molle, Multiplicity of positive solutions for elliptic problems in domains with unbounded boundary, Proc. Edinburgh Math. Soc., in press. Zbl1160.35411
  18. [18] Molle R., Semilinear elliptic problems in unbounded domains with unbounded boundary, Asymptotic Anal.38 (3/4) (2004) 293-307. Zbl1080.35024MR2072061
  19. [19] Molle R., Passaseo D., Multiple solutions of nonlinear elliptic Dirichlet problems in exterior domains, Nonlinear Anal. Ser. A: Theory & Methods39 (4) (2000) 447-462. Zbl0939.35071MR1725399
  20. [20] Schwartz J.T., Nonlinear Functional Analysis, Notes on Math. Appl., Gordon and Breach Science Publishers, New York, 1969. Zbl0203.14501MR433481
  21. [21] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
  22. [22] Struwe M., Variational Methods – Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. Zbl0746.49010
  23. [23] H.C. Wang, Palais–Smale approaches to semilinear elliptic equations in unbounded domains, Electron. J. Differential Equations, Monograph 06, 2004. Zbl1115.35036
  24. [24] Willem M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.