Three nodal solutions of singularly perturbed elliptic equations on domains without topology

Thomas Bartsch; Tobias Weth

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 3, page 259-281
  • ISSN: 0294-1449

How to cite

top

Bartsch, Thomas, and Weth, Tobias. "Three nodal solutions of singularly perturbed elliptic equations on domains without topology." Annales de l'I.H.P. Analyse non linéaire 22.3 (2005): 259-281. <http://eudml.org/doc/78656>.

@article{Bartsch2005,
author = {Bartsch, Thomas, Weth, Tobias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {3},
pages = {259-281},
publisher = {Elsevier},
title = {Three nodal solutions of singularly perturbed elliptic equations on domains without topology},
url = {http://eudml.org/doc/78656},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Bartsch, Thomas
AU - Weth, Tobias
TI - Three nodal solutions of singularly perturbed elliptic equations on domains without topology
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 3
SP - 259
EP - 281
LA - eng
UR - http://eudml.org/doc/78656
ER -

References

top
  1. [1] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
  2. [2] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
  3. [3] Bartsch T., Chang K.-C., Wang Z.-Q., On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z.233 (2000) 655-677. Zbl0946.35023MR1759266
  4. [4] Bartsch T., Liu Z., Weth T., Sign changing solutions to superlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004) 25-42. Zbl1140.35410MR2038142
  5. [5] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
  6. [6] Bartsch T., Weth T., A note on additional properties of sign changing solutions to superlinear Schrödinger equations, Topol. Methods Nonlinear Anal.22 (2003) 1-14. Zbl1094.35041MR2037264
  7. [7] Benci V., Cerami G., Positive solutions of semilinear elliptic problems in exterior domains, Arch. Rational Mech. Anal.99 (1987) 283-300. Zbl0635.35036MR898712
  8. [8] Benci V., Cerami G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var.2 (1994) 29-48. Zbl0822.35046MR1384393
  9. [9] Cao D., Noussair E.S., Multi-peak solutions for a singularly perturbed semilinear elliptic problem, J. Differential Equations166 (2000) 266-289. Zbl0966.35039MR1781257
  10. [10] Castro A., Cossio J., Neuberger J.M., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
  11. [11] Castro A., Cossio J., Neuberger J.M., A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic BVPs, Electronic J. Differential Equations2 (1998) 18. Zbl0901.35028
  12. [12] Chabrowski J., Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, River Edge, NJ, 1999. Zbl1059.35038MR1885519
  13. [13] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
  14. [14] Conti M., Terracini S., Verzini G., Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 871-888. Zbl1090.35076MR1939088
  15. [15] Coti-Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on R N , Comm. Pure Appl. Math.XLV (1992) 1217-1269. Zbl0785.35029MR1181725
  16. [16] Deimling K., Ordinary differential equations in Banach spaces, in: Lecture Notes in Math., vol. 596, Springer, Berlin, 1978. Zbl0361.34050MR463601
  17. [17] Gidas B., Ni W., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
  18. [18] Li S.J., Wang Z.-Q., Mountain pass theorems in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math.81 (2000) 373-396. Zbl0962.35065MR1785289
  19. [19] Li S.J., Wang Z.-Q., Lusternik–Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc.354 (2002) 3207-3227. Zbl1219.35067MR1897397
  20. [20] Li Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
  21. [21] Lions P., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal.49 (1982) 315-334. Zbl0501.46032MR683027
  22. [22] Lions P., The concentration-compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 223-283. Zbl0704.49004MR778974
  23. [23] Müller-Pfeiffer E., On the number of nodal domains for eigenfunctions of elliptic differential operators, J. London Math. Soc. (2)31 (1985) 91-100. Zbl0579.35063MR810566
  24. [24] Struwe M., Multiple solutions of differential equations without the Palais–Smale condition, Math. Ann.261 (1982) 399-412. Zbl0506.35034MR679798
  25. [25] Struwe M., Variational Methods, Springer, Berlin, 1990. Zbl0746.49010MR1078018
  26. [26] Wang Z.-Q., On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 43-57. Zbl0733.35043MR1094651

Citations in EuDML Documents

top
  1. Teresa D'Aprile, Angela Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
  2. Giovanna Cerami, Riccardo Molle, Donato Passaseo, Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary
  3. Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
  4. Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.