Three nodal solutions of singularly perturbed elliptic equations on domains without topology
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 3, page 259-281
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBartsch, Thomas, and Weth, Tobias. "Three nodal solutions of singularly perturbed elliptic equations on domains without topology." Annales de l'I.H.P. Analyse non linéaire 22.3 (2005): 259-281. <http://eudml.org/doc/78656>.
@article{Bartsch2005,
author = {Bartsch, Thomas, Weth, Tobias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {3},
pages = {259-281},
publisher = {Elsevier},
title = {Three nodal solutions of singularly perturbed elliptic equations on domains without topology},
url = {http://eudml.org/doc/78656},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Bartsch, Thomas
AU - Weth, Tobias
TI - Three nodal solutions of singularly perturbed elliptic equations on domains without topology
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 3
SP - 259
EP - 281
LA - eng
UR - http://eudml.org/doc/78656
ER -
References
top- [1] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
- [2] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
- [3] Bartsch T., Chang K.-C., Wang Z.-Q., On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z.233 (2000) 655-677. Zbl0946.35023MR1759266
- [4] Bartsch T., Liu Z., Weth T., Sign changing solutions to superlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004) 25-42. Zbl1140.35410MR2038142
- [5] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
- [6] Bartsch T., Weth T., A note on additional properties of sign changing solutions to superlinear Schrödinger equations, Topol. Methods Nonlinear Anal.22 (2003) 1-14. Zbl1094.35041MR2037264
- [7] Benci V., Cerami G., Positive solutions of semilinear elliptic problems in exterior domains, Arch. Rational Mech. Anal.99 (1987) 283-300. Zbl0635.35036MR898712
- [8] Benci V., Cerami G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var.2 (1994) 29-48. Zbl0822.35046MR1384393
- [9] Cao D., Noussair E.S., Multi-peak solutions for a singularly perturbed semilinear elliptic problem, J. Differential Equations166 (2000) 266-289. Zbl0966.35039MR1781257
- [10] Castro A., Cossio J., Neuberger J.M., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
- [11] Castro A., Cossio J., Neuberger J.M., A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic BVPs, Electronic J. Differential Equations2 (1998) 18. Zbl0901.35028
- [12] Chabrowski J., Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, River Edge, NJ, 1999. Zbl1059.35038MR1885519
- [13] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
- [14] Conti M., Terracini S., Verzini G., Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 871-888. Zbl1090.35076MR1939088
- [15] Coti-Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on , Comm. Pure Appl. Math.XLV (1992) 1217-1269. Zbl0785.35029MR1181725
- [16] Deimling K., Ordinary differential equations in Banach spaces, in: Lecture Notes in Math., vol. 596, Springer, Berlin, 1978. Zbl0361.34050MR463601
- [17] Gidas B., Ni W., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [18] Li S.J., Wang Z.-Q., Mountain pass theorems in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math.81 (2000) 373-396. Zbl0962.35065MR1785289
- [19] Li S.J., Wang Z.-Q., Lusternik–Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc.354 (2002) 3207-3227. Zbl1219.35067MR1897397
- [20] Li Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
- [21] Lions P., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal.49 (1982) 315-334. Zbl0501.46032MR683027
- [22] Lions P., The concentration-compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 223-283. Zbl0704.49004MR778974
- [23] Müller-Pfeiffer E., On the number of nodal domains for eigenfunctions of elliptic differential operators, J. London Math. Soc. (2)31 (1985) 91-100. Zbl0579.35063MR810566
- [24] Struwe M., Multiple solutions of differential equations without the Palais–Smale condition, Math. Ann.261 (1982) 399-412. Zbl0506.35034MR679798
- [25] Struwe M., Variational Methods, Springer, Berlin, 1990. Zbl0746.49010MR1078018
- [26] Wang Z.-Q., On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 43-57. Zbl0733.35043MR1094651
Citations in EuDML Documents
top- Teresa D'Aprile, Angela Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
- Giovanna Cerami, Riccardo Molle, Donato Passaseo, Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary
- Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
- Dimitri Mugnai, Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.