Random modulation of solitons for the stochastic Korteweg–de Vries equation
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 2, page 251-278
- ISSN: 0294-1449
Access Full Article
topHow to cite
topde Bouard, A., and Debussche, A.. "Random modulation of solitons for the stochastic Korteweg–de Vries equation." Annales de l'I.H.P. Analyse non linéaire 24.2 (2007): 251-278. <http://eudml.org/doc/78734>.
@article{deBouard2007,
author = {de Bouard, A., Debussche, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {stochastic partial differential equations; white noise; central limit theorem; solitary waves},
language = {eng},
number = {2},
pages = {251-278},
publisher = {Elsevier},
title = {Random modulation of solitons for the stochastic Korteweg–de Vries equation},
url = {http://eudml.org/doc/78734},
volume = {24},
year = {2007},
}
TY - JOUR
AU - de Bouard, A.
AU - Debussche, A.
TI - Random modulation of solitons for the stochastic Korteweg–de Vries equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 2
SP - 251
EP - 278
LA - eng
KW - stochastic partial differential equations; white noise; central limit theorem; solitary waves
UR - http://eudml.org/doc/78734
ER -
References
top- [1] Abdullaev F., Darmanyan S., Khabibullaev P., Optical Solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1993.
- [2] Ablowitz M.J., Segur H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. Zbl0472.35002MR642018
- [3] Bass G.G., Kivshar Y.S., Konotop V.V., Sinitsyn Y.A., Dynamics of solitons under random perturbations, Phys. Rep.157 (1988) 63-181. MR920335
- [4] Benjamin T.B., The stability of solitary waves, Proc. Roy. Soc. London Ser. A328 (1972) 153-183. MR338584
- [5] de Bouard A., Debussche A., On the stochastic Korteweg–de Vries equation, J. Funct. Anal.154 (1998) 215-251. Zbl0912.60074
- [6] de Bouard A., Debussche A., The stochastic nonlinear Schrödinger equation in , Stochastic Anal. Appl.21 (2003) 97-126. Zbl1027.60065MR1954077
- [7] de Bouard A., Debussche A., Tsutsumi Y., White noise driven Korteweg–de Vries equation, J. Funct. Anal.169 (1999) 532-558. Zbl0952.60062
- [8] A. de Bouard, A. Debussche, Y. Tsutsumi, Periodic solutions of the Korteweg–de Vries equation driven by white noise, SIAM J. Math. Anal., in press. Zbl1075.35121
- [9] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, in: Encyclopedia of Mathematics and its Application, Cambridge University Press, Cambridge, 1992. Zbl0761.60052MR1207136
- [10] Debussche A., Printems J., Numerical simulation of the stochastic Korteweg–de Vries equation, Phys. D134 (1999) 200-226. Zbl0948.76038
- [11] Falkovich G.E., Kolokolov I., Lebedev V., Turitsyn S.K., Statistics of soliton-bearing systems with additive noise, Phys. Rev. E63 (2001) 025601(R).
- [12] Freidlin M.I., Wentzell A.D., Random Perturbations of Dynamical Systems, Comprehensive Studies in Mathematics, Springer-Verlag, Berlin, 1984. Zbl0922.60006MR722136
- [13] Garnier J., Long-time dynamics of Korteweg–de Vries solitons driven by random perturbations, J. Statist. Phys.105 (2001) 789-833. Zbl0999.35086
- [14] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [15] Gyöngy I., Krylov N.V., Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields105 (1996) 143-158. Zbl0847.60038MR1392450
- [16] Herman R., The stochastic, damped Korteweg–de Vries equation, J. Phys. A.23 (1990) 1063-1084. Zbl0706.60068
- [17] Konotop V.V., Vasquez L., Nonlinear Random Waves, World Scientific, Singapore, 1994. Zbl1058.76500MR1425880
- [18] Martel Y., Merle F., Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal.157 (2001) 219-254. Zbl0981.35073MR1826966
- [19] Martel Y., Merle F., Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity18 (2005) 55-80. Zbl1064.35171MR2109467
- [20] Martel Y., Merle F., Tsai T.P., Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys.231 (2002) 347-373. Zbl1017.35098MR1946336
- [21] Miura R.M., The Korteweg–de Vries equation: a survey of results, SIAM Rev.18 (1976) 412-459. Zbl0333.35021
- [22] Pego R.L., Weinstein M.I., Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London Ser. A340 (1992) 47-94. Zbl0776.35065MR1177566
- [23] Pego R.L., Weinstein M.I., Asymptotic stability of solitary waves, Comm. Math. Phys.164 (1994) 305-349. Zbl0805.35117MR1289328
- [24] J. Printems, Aspects Théoriques et numériques de l'équation de Korteweg–de Vries stochastique, thèse, Université Paris-Sud, Orsay, France, 1998.
- [25] Scalerandi M., Romano A., Condat C.A., Korteweg–de Vries solitons under additive stochastic perturbations, Phys. Rev. E58 (1998) 4166-4173.
- [26] Temam R., Sur un problème non linéaire, J. Math. Pures Appl.48 (1969) 159-172. Zbl0187.03902MR261183
- [27] Wadati M., Stochastic Korteweg–de Vries equation, J. Phys. Soc. Japan52 (1983) 2642-2648.
- [28] Wadati M., Akutsu Y., Stochastic Korteweg–de Vries equation with and without damping, J. Phys. Soc. Japan53 (1984) 3342-3350.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.