On a stochastic Korteweg-de Vries equation with homogeneous noise
Anne de Bouard[1]; Arnaud Debussche[2]
- [1] Centre de Mathématiques Appliquées, UMR 7641 CNRS/Ecole Polytechnique, 91128 Palaiseau cedex, France
- [2] ENS de Cachan, Antenne de Bretagne, Av. R. Schumann, 35170 Bruz, France
Séminaire Équations aux dérivées partielles (2007-2008)
- page 1-13
Access Full Article
topHow to cite
topde Bouard, Anne, and Debussche, Arnaud. "On a stochastic Korteweg-de Vries equation with homogeneous noise." Séminaire Équations aux dérivées partielles (2007-2008): 1-13. <http://eudml.org/doc/11181>.
@article{deBouard2007-2008,
affiliation = {Centre de Mathématiques Appliquées, UMR 7641 CNRS/Ecole Polytechnique, 91128 Palaiseau cedex, France; ENS de Cachan, Antenne de Bretagne, Av. R. Schumann, 35170 Bruz, France},
author = {de Bouard, Anne, Debussche, Arnaud},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {stochastic KdV equation; global existence and uniqueness; homogeneous noise},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On a stochastic Korteweg-de Vries equation with homogeneous noise},
url = {http://eudml.org/doc/11181},
year = {2007-2008},
}
TY - JOUR
AU - de Bouard, Anne
AU - Debussche, Arnaud
TI - On a stochastic Korteweg-de Vries equation with homogeneous noise
JO - Séminaire Équations aux dérivées partielles
PY - 2007-2008
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
LA - eng
KW - stochastic KdV equation; global existence and uniqueness; homogeneous noise
UR - http://eudml.org/doc/11181
ER -
References
top- T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A328 (1972), 153–183. MR338584
- A. de Bouard, W. Craig, O. Diaz-Espinosa, P. Guyenne and C. Sulem, Long wave expansions for water waves over random topography, preprint ArXiv : 0710.0389. Zbl1228.76029
- A. de Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007), 251–278. Zbl1158.60359MR2310695
- A. de Bouard and A. Debussche, The Korteweg-de Vries equation with multiplicative homogeneous noise, in “Stochastic Differential Equations : Theory and Applications”, P.H. Baxendale and S.V. Lototsky Ed., Interdisciplinary Math. Sciences vol. 2, World Scientific, 2007. Zbl1137.35086
- A. de Bouard, A. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Vries equation, J. Funct. Anal.169 (1999), 532–558. Zbl0952.60062MR1730557
- A. de Bouard, A. Debussche and Y. Tsutsumi, Periodic solutions of the Korteweg-de Vries equation driven by white noise, SIAM J. Math. Anal.36 (2004/2005), 815–855. Zbl1075.35121MR2111917
- A. de Bouard, E. Gautier, Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise, preprint ArXiv : 0801.3894. Zbl1185.35246
- W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations8 (1985), 787–1003. Zbl0577.76030MR795808
- J. Garnier, Long time dynamics of Korteweg-de Vries solitons driven by random perturbations, J. stat. Phys.105 (2001), 789–833. Zbl0999.35086MR1869566
- J. Garnier, J.C. Muñoz Grajales and A. Nachbin, Effective behaviour of solitary waves over random topography, Multiscale Model. Simul.6 (2007), 995–1025. Zbl1151.76388MR2368977
- S. Kuksin and A. Piatnitski, Khasminskii-Whitham averaging for randomly perturbed KdV equation, J. Math. Pures Appl.89 (2008), 400–428. Zbl1148.35077MR2401144
- R.L. Pego and M.I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys.164 (1994), 305–349. Zbl0805.35117MR1289328
- J. Printems, Aspects Théoriques et numériques de l’équation de Korteweg-de Vries stochastique, thèse, Université Paris-Sud, Orsay, France, 1998.
- R. Rosales and G. Papanicolaou, Gravity waves in a channel with a rough bottom, Stud. Appl. Math.68 (1983), 89–102. Zbl0516.76018MR693716
- M. Scalerandi, A. Romano and C.A. Condat, Korteweg-de Vries solitons under additive stochastic perturbations, Phys. Review E58 (1998), 4166–4173.
- Y. Tsutsumi, Time decay of solution for the KdV equation with multiplicative space-time noise, preprint, 2007.
- M. Wadati, Stochastic Korteweg-de Vries equations, J. Phys. Soc. Japan52 (1983), 2642–2648. MR722214
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.