Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum

Matthieu Barrandon

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 3, page 443-469
  • ISSN: 0294-1449

How to cite

top

Barrandon, Matthieu. "Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 443-469. <http://eudml.org/doc/78743>.

@article{Barrandon2007,
author = {Barrandon, Matthieu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear water waves; travelling waves; infinite-dimensional reversible dynamical system; free upper surface},
language = {eng},
number = {3},
pages = {443-469},
publisher = {Elsevier},
title = {Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum},
url = {http://eudml.org/doc/78743},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Barrandon, Matthieu
TI - Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 443
EP - 469
LA - eng
KW - nonlinear water waves; travelling waves; infinite-dimensional reversible dynamical system; free upper surface
UR - http://eudml.org/doc/78743
ER -

References

top
  1. [1] Amick C., On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc.364 (1994) 399-419. Zbl0829.76012MR1145726
  2. [2] Amick C., Toland J., Uniqueness and related analytic properties for the Benjamin–Ono equation – a nonlinear Neumann problem in the plane, Acta Math.105 (1989) 1-49. Zbl0755.35108
  3. [3] Barrandon M., Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, J. Math. Fluid Mech.8 (2006) 267-310. Zbl1105.35014MR2220447
  4. [4] Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech.29 (1967) 559-592. Zbl0147.46502
  5. [5] Dias F., Iooss G., Water-waves as a spatial dynamical system, in: Friedlander S., Serre D. (Eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499. Zbl1183.76630MR1984157
  6. [6] Iooss G., Gravity and capillary-gravity periodic traveling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid. Mech.1 (1999) 24-61. Zbl0926.76020MR1699018
  7. [7] Iooss G., Lombardi E., Sun S.M., Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. R. Soc. Lond. Ser. A360 (2002) 2245-2336. Zbl1152.76335MR1949970
  8. [8] Kirchgässner K., Wave solutions of reversible systems and applications, J. Differential Equations45 (1982) 113-127. Zbl0507.35033MR662490
  9. [9] Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan39 (1975) 1082-1091. Zbl1334.76027MR398275
  10. [10] Steinberg S., Meromorphic families of compact operators, Arch. Rational Mech. Anal.31 (1968/1969) 372-379. Zbl0167.43002MR233240
  11. [11] Sun S.M., Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal.30 (1997) 5481-5490. Zbl0912.76013MR1726052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.