Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 3, page 443-469
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBarrandon, Matthieu. "Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 443-469. <http://eudml.org/doc/78743>.
@article{Barrandon2007,
author = {Barrandon, Matthieu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear water waves; travelling waves; infinite-dimensional reversible dynamical system; free upper surface},
language = {eng},
number = {3},
pages = {443-469},
publisher = {Elsevier},
title = {Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum},
url = {http://eudml.org/doc/78743},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Barrandon, Matthieu
TI - Benjamin–Ono periodic bifurcating water waves in presence of an essential spectrum
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 443
EP - 469
LA - eng
KW - nonlinear water waves; travelling waves; infinite-dimensional reversible dynamical system; free upper surface
UR - http://eudml.org/doc/78743
ER -
References
top- [1] Amick C., On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc.364 (1994) 399-419. Zbl0829.76012MR1145726
- [2] Amick C., Toland J., Uniqueness and related analytic properties for the Benjamin–Ono equation – a nonlinear Neumann problem in the plane, Acta Math.105 (1989) 1-49. Zbl0755.35108
- [3] Barrandon M., Reversible bifurcation of homoclinic solutions in presence of an essential spectrum, J. Math. Fluid Mech.8 (2006) 267-310. Zbl1105.35014MR2220447
- [4] Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech.29 (1967) 559-592. Zbl0147.46502
- [5] Dias F., Iooss G., Water-waves as a spatial dynamical system, in: Friedlander S., Serre D. (Eds.), Handbook of Mathematical Fluid Dynamics, vol. II, Elsevier, 2003, pp. 443-499. Zbl1183.76630MR1984157
- [6] Iooss G., Gravity and capillary-gravity periodic traveling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid. Mech.1 (1999) 24-61. Zbl0926.76020MR1699018
- [7] Iooss G., Lombardi E., Sun S.M., Gravity traveling waves for two superposed fluid layers of infinite depth: a new type of bifurcation, Philos. Trans. R. Soc. Lond. Ser. A360 (2002) 2245-2336. Zbl1152.76335MR1949970
- [8] Kirchgässner K., Wave solutions of reversible systems and applications, J. Differential Equations45 (1982) 113-127. Zbl0507.35033MR662490
- [9] Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan39 (1975) 1082-1091. Zbl1334.76027MR398275
- [10] Steinberg S., Meromorphic families of compact operators, Arch. Rational Mech. Anal.31 (1968/1969) 372-379. Zbl0167.43002MR233240
- [11] Sun S.M., Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Anal.30 (1997) 5481-5490. Zbl0912.76013MR1726052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.