Regularity criteria for the generalized viscous MHD equations

Yong Zhou[1]

  • [1] Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 3, page 491-505
  • ISSN: 0294-1449

How to cite

top

Zhou, Yong. "Regularity criteria for the generalized viscous MHD equations." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 491-505. <http://eudml.org/doc/78745>.

@article{Zhou2007,
affiliation = {Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)},
author = {Zhou, Yong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {3},
pages = {491-505},
publisher = {Elsevier},
title = {Regularity criteria for the generalized viscous MHD equations},
url = {http://eudml.org/doc/78745},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Zhou, Yong
TI - Regularity criteria for the generalized viscous MHD equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 491
EP - 505
LA - eng
UR - http://eudml.org/doc/78745
ER -

References

top
  1. [1] Beirão da Veiga H., A new regularity class for the Navier–Stokes equations in R n , Chinese Ann. Math.16 (1995) 407-412. Zbl0837.35111
  2. [2] Beirão da Veiga H., Vorticity and smoothness in viscous flows, in: Nonlinear Problems in Mathematical Physics and Related Topics, II, Int. Math. Ser. (N.Y.), vol. 2, Kluwer/Plenum, New York, 2002, pp. 61-67. Zbl1183.76666MR1971989
  3. [3] Beirão da Veiga H., Berselli L.C., On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations15 (3) (2002) 345-356. Zbl1014.35072MR1870646
  4. [4] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (1982) 771-831. Zbl0509.35067
  5. [5] Caflisch R., Klapper I., Steele G., Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys.184 (2) (1997) 443-455. Zbl0874.76092MR1462753
  6. [6] Chemin J.Y., Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0927.76002MR1688875
  7. [7] Constantin P., Fefferman C., Direction of vorticity and the problem of global regularity for the Navier–Stokes equations, Indiana Univ. Math. J.42 (1993) 775-789. Zbl0837.35113
  8. [8] Duoandikoetxea J., Fourier Analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001, Translated and revised from the 1995 Spanish original by David Cruz-Uribe. Zbl0969.42001MR1800316
  9. [9] He C., On partial regularity for weak solutions to the Navier–Stokes equations, J. Funct. Anal.211 (1) (2004) 153-162. Zbl1062.35065
  10. [10] He C., Xin Z., On the regularity of solutions to the magnetohydrodynamic equations, J. Differential Equations213 (2) (2005) 235-254. Zbl1072.35154MR2142366
  11. [11] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math.36 (5) (1983) 635-664. Zbl0524.76099MR716200
  12. [12] Serrin J., On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Rational Mech. Anal.9 (1962) 187-195. Zbl0106.18302
  13. [13] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
  14. [14] Tian G., Xin Z., Gradient estimation on Navier–Stokes equations, Comm. Anal. Geom.7 (1999) 221-257. Zbl0939.35139
  15. [15] Wu J., Generalized MHD equations, J. Differential Equations195 (2003) 284-312. Zbl1057.35040MR2016814
  16. [16] Wu J., Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci.12 (4) (2002) 395-413. Zbl1029.76062MR1915942
  17. [17] Zhou Y., A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component, Method Appl. Anal.9 (4) (2002) 563-578. Zbl1166.35359
  18. [18] Zhou Y., Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain, Math. Ann.328 (1–2) (2004) 173-192. Zbl1054.35062
  19. [19] Zhou Y., A new regularity criterion for the Navier–Stokes equations in terms of the direction of vorticity, Monatsh. Math.144 (2005) 251-257. Zbl1072.35148
  20. [20] Zhou Y., A new regularity criterion for weak solutions to the Navier–Stokes equations, J. Math. Pures Appl. (9)84 (11) (2005) 1496-1514. Zbl1092.35081
  21. [21] Zhou Y., Remarks on regularities for the 3D MHD equations, Discrete Contin. Dynam. Syst.12 (5) (2005) 881-886. Zbl1068.35117MR2128731
  22. [22] Zhou Y., On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in R N , Z. Angew. Math. Phys.57 (2006) 384-392. Zbl1099.35091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.