Regularity criteria for the generalized viscous MHD equations
Yong Zhou[1]
- [1] Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 3, page 491-505
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZhou, Yong. "Regularity criteria for the generalized viscous MHD equations." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 491-505. <http://eudml.org/doc/78745>.
@article{Zhou2007,
affiliation = {Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)},
author = {Zhou, Yong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {3},
pages = {491-505},
publisher = {Elsevier},
title = {Regularity criteria for the generalized viscous MHD equations},
url = {http://eudml.org/doc/78745},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Zhou, Yong
TI - Regularity criteria for the generalized viscous MHD equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 491
EP - 505
LA - eng
UR - http://eudml.org/doc/78745
ER -
References
top- [1] Beirão da Veiga H., A new regularity class for the Navier–Stokes equations in , Chinese Ann. Math.16 (1995) 407-412. Zbl0837.35111
- [2] Beirão da Veiga H., Vorticity and smoothness in viscous flows, in: Nonlinear Problems in Mathematical Physics and Related Topics, II, Int. Math. Ser. (N.Y.), vol. 2, Kluwer/Plenum, New York, 2002, pp. 61-67. Zbl1183.76666MR1971989
- [3] Beirão da Veiga H., Berselli L.C., On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations15 (3) (2002) 345-356. Zbl1014.35072MR1870646
- [4] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (1982) 771-831. Zbl0509.35067
- [5] Caflisch R., Klapper I., Steele G., Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys.184 (2) (1997) 443-455. Zbl0874.76092MR1462753
- [6] Chemin J.Y., Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0927.76002MR1688875
- [7] Constantin P., Fefferman C., Direction of vorticity and the problem of global regularity for the Navier–Stokes equations, Indiana Univ. Math. J.42 (1993) 775-789. Zbl0837.35113
- [8] Duoandikoetxea J., Fourier Analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001, Translated and revised from the 1995 Spanish original by David Cruz-Uribe. Zbl0969.42001MR1800316
- [9] He C., On partial regularity for weak solutions to the Navier–Stokes equations, J. Funct. Anal.211 (1) (2004) 153-162. Zbl1062.35065
- [10] He C., Xin Z., On the regularity of solutions to the magnetohydrodynamic equations, J. Differential Equations213 (2) (2005) 235-254. Zbl1072.35154MR2142366
- [11] Sermange M., Temam R., Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math.36 (5) (1983) 635-664. Zbl0524.76099MR716200
- [12] Serrin J., On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Rational Mech. Anal.9 (1962) 187-195. Zbl0106.18302
- [13] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
- [14] Tian G., Xin Z., Gradient estimation on Navier–Stokes equations, Comm. Anal. Geom.7 (1999) 221-257. Zbl0939.35139
- [15] Wu J., Generalized MHD equations, J. Differential Equations195 (2003) 284-312. Zbl1057.35040MR2016814
- [16] Wu J., Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci.12 (4) (2002) 395-413. Zbl1029.76062MR1915942
- [17] Zhou Y., A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component, Method Appl. Anal.9 (4) (2002) 563-578. Zbl1166.35359
- [18] Zhou Y., Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain, Math. Ann.328 (1–2) (2004) 173-192. Zbl1054.35062
- [19] Zhou Y., A new regularity criterion for the Navier–Stokes equations in terms of the direction of vorticity, Monatsh. Math.144 (2005) 251-257. Zbl1072.35148
- [20] Zhou Y., A new regularity criterion for weak solutions to the Navier–Stokes equations, J. Math. Pures Appl. (9)84 (11) (2005) 1496-1514. Zbl1092.35081
- [21] Zhou Y., Remarks on regularities for the 3D MHD equations, Discrete Contin. Dynam. Syst.12 (5) (2005) 881-886. Zbl1068.35117MR2128731
- [22] Zhou Y., On a regularity criterion in terms of the gradient of pressure for the Navier–Stokes equations in , Z. Angew. Math. Phys.57 (2006) 384-392. Zbl1099.35091
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.