Logarithmically improved blow-up criterion for smooth solutions to the Leray- α -magnetohydrodynamic equations

Ines Ben Omrane; Sadek Gala; Jae-Myoung Kim; Maria Alessandra Ragusa

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 1, page 55-68
  • ISSN: 0044-8753

Abstract

top
In this paper, the Cauchy problem for the 3 D Leray- α -MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray- α -MHD model in terms of the magnetic field B only in the framework of homogeneous Besov space with negative index.

How to cite

top

Omrane, Ines Ben, et al. "Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations." Archivum Mathematicum 055.1 (2019): 55-68. <http://eudml.org/doc/294781>.

@article{Omrane2019,
abstract = {In this paper, the Cauchy problem for the $3D$ Leray-$\alpha $-MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray-$\alpha $-MHD model in terms of the magnetic field $B$ only in the framework of homogeneous Besov space with negative index.},
author = {Omrane, Ines Ben, Gala, Sadek, Kim, Jae-Myoung, Ragusa, Maria Alessandra},
journal = {Archivum Mathematicum},
keywords = {magnetohydrodynamic-$\alpha $ model; regularity criterion; Besov space},
language = {eng},
number = {1},
pages = {55-68},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations},
url = {http://eudml.org/doc/294781},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Omrane, Ines Ben
AU - Gala, Sadek
AU - Kim, Jae-Myoung
AU - Ragusa, Maria Alessandra
TI - Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 1
SP - 55
EP - 68
AB - In this paper, the Cauchy problem for the $3D$ Leray-$\alpha $-MHD model is investigated. We obtain the logarithmically improved blow-up criterion of smooth solutions for the Leray-$\alpha $-MHD model in terms of the magnetic field $B$ only in the framework of homogeneous Besov space with negative index.
LA - eng
KW - magnetohydrodynamic-$\alpha $ model; regularity criterion; Besov space
UR - http://eudml.org/doc/294781
ER -

References

top
  1. Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., 10.1103/PhysRevLett.81.5338, Phys. Rev. Lett. 81 (1998), 5338–5341. (1998) MR1745983DOI10.1103/PhysRevLett.81.5338
  2. Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., 10.1063/1.870096, Phys. Fluids 11 (1999), 2343–2353. (1999) MR1719962DOI10.1063/1.870096
  3. Chen, S.Y., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., 10.1016/S0167-2789(99)00098-6, Phys. D 133 (1999), 49–65. (1999) MR1721139DOI10.1016/S0167-2789(99)00098-6
  4. Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S., On a Leray- α model of turbulence, Proc. Roy. Soc. London Ser. A 461 (2005), 629–649. (2005) MR2121928
  5. Fan, J., Ozawa, T., 10.3934/krm.2009.2.293, Kinet. Relat. Models 2 (2009), 293–305. (2009) MR2507450DOI10.3934/krm.2009.2.293
  6. Foias, C., Holm, D.D., Titi, E.S., 10.1023/A:1012984210582, J. Differential Equations 14 (2002), 1–35. (2002) MR1878243DOI10.1023/A:1012984210582
  7. Frazier, M., Jawerth, B., Weiss, G., Littlewood-Paley theoryand the study of function spaces, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,, 1991. (1991) MR1107300
  8. Gala, S., Guo, Z., 10.1063/1.3569967, J. Math. Phys. 52 (6) (2011), 9pp., 063503 https://doi.org/10.1063/1.3569967. (2011) MR2841759DOI10.1063/1.3569967
  9. Hajaiej, H., Molinet, L., Ozawa, T., Wang, B., Necessary and sufficient conditions for the fractional Gargliardo-Nirenberginequalities and applications to Navier-Stokes and generalized bosonequations, RIMS Kokyuroku Bessatsu 26 (2011), 159–175. (2011) MR2883850
  10. Holm, D.D., 10.1063/1.1460941, Chaos 12 (2002), 518–530. (2002) MR1907663DOI10.1063/1.1460941
  11. Ilyin, A.A., Lunasin, E.M., Titi, E.S., 10.1088/0951-7715/19/4/006, Nonlinearity 19 (2006), 879–897. (2006) MR2214948DOI10.1088/0951-7715/19/4/006
  12. Kato, T., 10.1007/BFb0084898, Lecture Notes in Math., vol. 1450, Springer-Verlag, Berlin, 1990. (1990) MR1084601DOI10.1007/BFb0084898
  13. Kato, T., Ponce, G., 10.1002/cpa.3160410704, Comm. Pure Appl. Math. 41 (1988), 891–907. (1988) Zbl0671.35066MR0951744DOI10.1002/cpa.3160410704
  14. Linshiz, J.S., Titi, E.S., 10.1063/1.2360145, J. Math. Phys. 48 (2007), 28pp., 065504. (2007) MR2337020DOI10.1063/1.2360145
  15. Machihara, S., Ozawa, T., 10.1090/S0002-9939-02-06715-1, Proc. Amer. Math. Soc. 131 (2003), 1553–1556. (2003) MR1949885DOI10.1090/S0002-9939-02-06715-1
  16. Meyer, Y., Oscillating patterns in some linear evolutionequations, Lecture Notes in Math., vol. 1871, 2006, pp. 101–187. (2006) MR2196363
  17. Zhou, Y., 10.3934/dcds.2005.12.881, Discrete Contin. Dynam. Systems 12 (2005), 881–886. (2005) MR2128731DOI10.3934/dcds.2005.12.881
  18. Zhou, Y., 10.1016/j.anihpc.2006.03.014, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (3) (2007), 491–505. (2007) MR2321203DOI10.1016/j.anihpc.2006.03.014
  19. Zhou, Y., Fan, J., On the Cauchy problem for a Leray- α model, Nonlinear Analysis Real World Applications (2010). (2010) MR2729050
  20. Zhou, Y., Fan, J., 10.1016/j.na.2010.10.014, Nonlinear Anal. 74 (2011), 1410–1420. (2011) MR2746819DOI10.1016/j.na.2010.10.014
  21. Zhou, Y., Fan, J., 10.3934/cpaa.2011.10.309, Comm. Pure Appl. Anal. 10 (2011), 309–326. (2011) MR2746540DOI10.3934/cpaa.2011.10.309
  22. Zhou, Y., Gala, S., 10.1016/j.jmaa.2009.03.038, J. Math. Anal. Appl. 356 (2009), 498–501. (2009) MR2524284DOI10.1016/j.jmaa.2009.03.038
  23. Zhou, Y., Gala, S., 10.1007/s00033-009-0023-1, Z. Angew. Math. Phys. 61 (2010), 193–199. (2010) MR2609661DOI10.1007/s00033-009-0023-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.