Supercritical elliptic problems in domains with small holes

Manuel del Pino; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 4, page 507-520
  • ISSN: 0294-1449

How to cite

top

del Pino, Manuel, and Wei, Juncheng. "Supercritical elliptic problems in domains with small holes." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 507-520. <http://eudml.org/doc/78746>.

@article{delPino2007,
author = {del Pino, Manuel, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {supercritical Coron's problem; domains with holes; resonant exponents},
language = {eng},
number = {4},
pages = {507-520},
publisher = {Elsevier},
title = {Supercritical elliptic problems in domains with small holes},
url = {http://eudml.org/doc/78746},
volume = {24},
year = {2007},
}

TY - JOUR
AU - del Pino, Manuel
AU - Wei, Juncheng
TI - Supercritical elliptic problems in domains with small holes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 507
EP - 520
LA - eng
KW - supercritical Coron's problem; domains with holes; resonant exponents
UR - http://eudml.org/doc/78746
ER -

References

top
  1. [1] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.41 (1988) 255-294. Zbl0649.35033MR929280
  2. [2] Brezis H., Elliptic equations with limiting Sobolev exponent – the impact of topology, Comm. Pure Appl. Math.39 (1986). Zbl0601.35043
  3. [3] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-447. Zbl0541.35029MR709644
  4. [4] Coron J.M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Ser. I299 (1984) 209-212. Zbl0569.35032MR762722
  5. [5] Dancer E.N., Real analyticity and non-degeneracy, Math. Ann.325 (2) (2003) 369-392. Zbl1040.35033MR1962054
  6. [6] J. Dávila, M. del Pino, M. Musso, The supercritical Lane–Emden–Fowler equation in exterior domains, Preprint, 2006. Zbl1137.35023
  7. [7] del Pino M., Dolbeault J., Musso M., The Brezis–Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl. (9)83 (12) (2004) 1405-1456. Zbl1130.35040
  8. [8] del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Calc. Var. Partial Differential Equations16 (2) (2003) 113-145. Zbl1142.35421
  9. [9] del Pino M., Felmer P., Musso M., Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations182 (2) (2002) 511-540. Zbl1014.35028MR1900333
  10. [10] Ge Y., Jing R., Pacard F., Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal.221 (2) (2005) 251-302. Zbl1129.35379MR2124865
  11. [11] M. Grossi, Asymptotic behavior of the Kazdan–Warner solution in the annulus, J. Differential Equations, in press. Zbl1170.35420
  12. [12] Kato T., Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, vol. 132, second ed., Springer-Verlag, Berlin, 1976. Zbl0342.47009MR407617
  13. [13] Kazdan J., Warner F., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math.28 (5) (1975) 567-597. Zbl0325.35038MR477445
  14. [14] Khenissy S., Rey O., A criterion for existence of solutions to the supercritical Bahri–Coron's problem, Houston J. Math.30 (2) (2004) 587-613. Zbl1172.35390
  15. [15] Micheletti A., Pistoia A., On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity17 (3) (2004) 851-866. Zbl1102.35042MR2057131
  16. [16] Molle R., Passaseo D., Positive solutions of slightly supercritical elliptic equations in symmetric domains, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (5) (2004) 639-656. Zbl1149.35353MR2086752
  17. [17] Ni W.-M., A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J.31 (6) (1982) 801-807. Zbl0515.35033MR674869
  18. [18] Passaseo D., Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal.114 (1) (1993) 97-105. Zbl0793.35039MR1220984
  19. [19] Passaseo D., Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J.92 (2) (1998) 429-457. Zbl0943.35034MR1612734
  20. [20] Pohozaev S., Eigenfunctions of the equation Δ u + λ f u = 0 , Soviet Math. Dokl.6 (1965) 1408-1411. Zbl0141.30202MR192184
  21. [21] Rellich F., Störungstheorie der Spektralzerlegung. IV, Math. Ann.117 (1940) 356-382. Zbl0023.13503MR2715
  22. [22] Rey O., On a variational problem with lack of compactness: the effect of small holes in the domain, C. R. Acad. Sci. Paris Ser. I Math.308 (12) (1989) 349-352. Zbl0686.35047MR992090
  23. [23] Wei J., Winter M., Critical threshold and stability of cluster solutions for large reaction–diffusion system in R 1 , SIAM J. Math. Anal.33 (2002) 1058-1089. Zbl1019.35014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.