A “quasi maximum principle” for I -surfaces

Ruben Jakob

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 4, page 549-561
  • ISSN: 0294-1449

How to cite

top

Jakob, Ruben. "A “quasi maximum principle” for $I$-surfaces." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 549-561. <http://eudml.org/doc/78749>.

@article{Jakob2007,
author = {Jakob, Ruben},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {4},
pages = {549-561},
publisher = {Elsevier},
title = {A “quasi maximum principle” for $I$-surfaces},
url = {http://eudml.org/doc/78749},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Jakob, Ruben
TI - A “quasi maximum principle” for $I$-surfaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 549
EP - 561
LA - eng
UR - http://eudml.org/doc/78749
ER -

References

top
  1. [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] Alt H.W., Lineare Funktionalanalysis, 3. Auflage, Springer-Verlag, Berlin, 1999. Zbl0923.46001
  3. [3] Amann H., Ordinary Differential Equations, Studies in Mathematics, vol. 13, de Gruyter, Berlin, 1990. Zbl0708.34002MR1071170
  4. [4] Guillemin V., Pollack A., Differential Topology, Prentice Hall, Englewood Cliffs, NJ, 1974. Zbl0361.57001MR348781
  5. [5] Hildebrandt S., Analysis 2, Springer-Verlag, Berlin, 2003. Zbl1112.26001MR2008327
  6. [6] Jakob R., Unstable extremal surfaces of the “Shiffman-functional”, Calc. Var.21 (2004) 401-427. Zbl1083.49026
  7. [7] Jakob R., Instabile Extremalen des Shiffman-Funktionals, Bonner Math. Schriften362 (2003) 1-103. Zbl1083.49027MR2069486
  8. [8] R. Jakob, Unstable extremal surfaces of the “Shiffman functional” spanning rectifiable boundary curves, Calc. Var., 2006, in press, doi:10.1007/s00526-006-0052-y. 
  9. [9] McShane E.J., Parametrization of saddle surfaces, with application to the problem of Plateau, Trans. Amer. Math. Soc.35 (1933) 716-733. Zbl0007.11902MR1501713
  10. [10] McShane E.J., Existence theorems for double integral problems of the calculus of variations, Trans. Amer. Math. Soc.38 (1935) 549-563. Zbl0013.12001MR1501828JFM61.0555.01
  11. [11] Nitsche J.C.C., Vorlesungen über Minimalflächen, Grundlehren der mathematischen Wissenschaften, vol. 199, Springer-Verlag, Berlin, 1975. Zbl0319.53003MR448224
  12. [12] Shiffman M., Instability for double integral problems in the calculus of variations, Ann. of Math.45 (3) (1944) 543-576. Zbl0063.06963MR11162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.