A “quasi maximum principle” for -surfaces
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 4, page 549-561
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [2] Alt H.W., Lineare Funktionalanalysis, 3. Auflage, Springer-Verlag, Berlin, 1999. Zbl0923.46001
- [3] Amann H., Ordinary Differential Equations, Studies in Mathematics, vol. 13, de Gruyter, Berlin, 1990. Zbl0708.34002MR1071170
- [4] Guillemin V., Pollack A., Differential Topology, Prentice Hall, Englewood Cliffs, NJ, 1974. Zbl0361.57001MR348781
- [5] Hildebrandt S., Analysis 2, Springer-Verlag, Berlin, 2003. Zbl1112.26001MR2008327
- [6] Jakob R., Unstable extremal surfaces of the “Shiffman-functional”, Calc. Var.21 (2004) 401-427. Zbl1083.49026
- [7] Jakob R., Instabile Extremalen des Shiffman-Funktionals, Bonner Math. Schriften362 (2003) 1-103. Zbl1083.49027MR2069486
- [8] R. Jakob, Unstable extremal surfaces of the “Shiffman functional” spanning rectifiable boundary curves, Calc. Var., 2006, in press, doi:10.1007/s00526-006-0052-y.
- [9] McShane E.J., Parametrization of saddle surfaces, with application to the problem of Plateau, Trans. Amer. Math. Soc.35 (1933) 716-733. Zbl0007.11902MR1501713
- [10] McShane E.J., Existence theorems for double integral problems of the calculus of variations, Trans. Amer. Math. Soc.38 (1935) 549-563. Zbl0013.12001MR1501828JFM61.0555.01
- [11] Nitsche J.C.C., Vorlesungen über Minimalflächen, Grundlehren der mathematischen Wissenschaften, vol. 199, Springer-Verlag, Berlin, 1975. Zbl0319.53003MR448224
- [12] Shiffman M., Instability for double integral problems in the calculus of variations, Ann. of Math.45 (3) (1944) 543-576. Zbl0063.06963MR11162