The Wigner–Poisson–Fokker–Planck system : global-in-time solution and dispersive effects

Anton Arnold; Elidon Dhamo; Chiara Manzini

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 4, page 645-676
  • ISSN: 0294-1449

How to cite

top

Arnold, Anton, Dhamo, Elidon, and Manzini, Chiara. "The Wigner–Poisson–Fokker–Planck system : global-in-time solution and dispersive effects." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 645-676. <http://eudml.org/doc/78754>.

@article{Arnold2007,
author = {Arnold, Anton, Dhamo, Elidon, Manzini, Chiara},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Wigner equation; Fokker-Planck operator; Poisson equation; dispersive regularization; nonlinear Hartree potential; dissipative semigroup},
language = {eng},
number = {4},
pages = {645-676},
publisher = {Elsevier},
title = {The Wigner–Poisson–Fokker–Planck system : global-in-time solution and dispersive effects},
url = {http://eudml.org/doc/78754},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Arnold, Anton
AU - Dhamo, Elidon
AU - Manzini, Chiara
TI - The Wigner–Poisson–Fokker–Planck system : global-in-time solution and dispersive effects
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 645
EP - 676
LA - eng
KW - Wigner equation; Fokker-Planck operator; Poisson equation; dispersive regularization; nonlinear Hartree potential; dissipative semigroup
UR - http://eudml.org/doc/78754
ER -

References

top
  1. [1] Arnold A., Self-consistent relaxation-time models in quantum mechanics, Comm. Partial Differential Equations21 (3&4) (1995) 473-506. Zbl0849.35113MR1387456
  2. [2] Arnold A., Carrillo J.A., Dhamo E., On the periodic Wigner–Poisson–Fokker–Planck system, J. Math. Anal. Appl.275 (2002) 263-276. Zbl1014.35084
  3. [3] Arnold A., López J.L., Markowich P.A., Soler J., An analysis of quantum Fokker–Planck models: A Wigner function approach, Rev. Mat. Iberoamericana20 (3) (2004) 771-814. Zbl1062.35097
  4. [4] Arnold A., Ringhofer C., An operator splitting method for the Wigner–Poisson problem, SIAM J. Numer. Anal.33 (1996) 1622-1643. Zbl0860.65143
  5. [5] Arnold A., Sparber C., Conservative quantum dynamical semigroups for mean-field quantum diffusion models, Comm. Math. Phys.251 (1) (2004) 179-207. Zbl1085.82004MR2096738
  6. [6] Bouchut F., Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions, J. Funct. Anal.111 (1993) 239-258. Zbl0777.35059
  7. [7] Bouchut F., Smoothing effect for the non-linear Vlasov–Poisson–Fokker–Planck system, J. Differential Equations122 (2) (1995) 225-238. Zbl0840.35053
  8. [8] Brezzi F., Markowich P.A., The three-dimensional Wigner–Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci.14 (1) (1991) 35-61. Zbl0739.35080
  9. [9] Caldeira A.O., Leggett A.J., Path integral approach to quantum Brownian motion, Physica A121 (1983) 587-616. Zbl0585.60082MR726154
  10. [10] Cañizo J.A., López J.L., Nieto J., Global L 1 -theory and regularity for the 3D non-linear Wigner–Poisson-Fokker–Planck system, J. Differential Equations198 (2004) 356-373. Zbl1039.35093
  11. [11] Carpio A., Long time behavior for solutions of the Vlasov–Poisson–Fokker–Planck equation, Math. Meth. Appl. Sci.21 (1998) 985-1014. Zbl0911.35090
  12. [12] Carrillo J.A., Soler J., Vázquez J.L., Asymptotic behaviour and selfsimilarity for the three dimensional Vlasov–Poisson–Fokker–Planck system, J. Funct. Anal.141 (1996) 99-132. Zbl0873.35066
  13. [13] Castella F., L 2 solutions to the Schrödinger–Poisson system: existence, uniqueness, time behaviour, and smoothing effects, Math. Models Methods Appl. Sci.7 (8) (1997) 1051-1083. Zbl0892.35141
  14. [14] Castella F., The Vlasov–Poisson–Fokker–Planck system with infinite kinetic energy, Indiana Univ. Math. J.47 (3) (1998) 939-964. Zbl0926.35004
  15. [15] Castella F., Erdös L., Frommlet F., Markowich P.A., Fokker–Planck equations as scaling limits of reversible quantum systems, J. Stat. Phys.100 (3/4) (2000) 543-601. Zbl0988.82038
  16. [16] Castella F., Perthame B., Strichartz estimates for kinetic transport equations, C. R. Acad. Sci. Paris, Ser. I332 (1) (1996) 535-540. Zbl0848.35095MR1383431
  17. [17] Diósi L., On high-temperature Markovian equation for quantum Brownian motion, Europhys. Lett.22 (1993) 1-3. 
  18. [18] Gruvin H.L., Govindan T.R., Kreskovsky J.P., Stroscio M.A., Transport via the Liouville equation and moments of quantum distribution functions, Solid State Electr.36 (1993) 1697-1709. 
  19. [19] Helffer B., Nier F., Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. Zbl1072.35006
  20. [20] Hérau F., Nier F., Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with high degree potential, Arch. Rational Mech. Anal.171 (2) (2004). Zbl1139.82323
  21. [21] Lions P.L., Perthame B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math.105 (1991) 415-430. Zbl0741.35061
  22. [22] Manzini C., The three dimensional Wigner–Poisson problem with inflow boundary conditions, J. Math. Anal. Appl.313 (1) (2006) 184-196. Zbl1160.35543
  23. [23] Manzini C., Barletti L., An analysis of the Wigner–Poisson problem with time-dependent, inflow boundary conditions, Nonlin. Anal.60 (1) (2004) 77-100. Zbl1084.81051
  24. [24] Markowich P.A., Ringhofer C., An analysis of the quantum Liouville equation, Z. Angew. Math. Mech.69 (1989) 121-127. Zbl0682.46047MR990011
  25. [25] Markowich P.A., Ringhofer C., Schmeiser C., Semiconductor Equations, Springer, 1990. Zbl0765.35001MR1063852
  26. [26] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. Zbl0516.47023MR710486
  27. [27] Perthame B., Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Differential Equations21 (1&2) (1996) 659-686. Zbl0852.35139MR1387464
  28. [28] Reed M., Simon B., Methods of Modern Mathematical Physics I, Functional Analysis, Academic Press, 1980. Zbl0459.46001MR751959
  29. [29] Risken H., The Fokker–Planck Equation, Springer, 1984. Zbl0546.60084
  30. [30] Sparber C., Carrillo J.A., Dolbeault J., Markowich P.A., On the long time behavior of the quantum Fokker–Planck equation, Monatsh. Math.141 (3) (2004) 237-257. Zbl1061.35095
  31. [31] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501MR290095
  32. [32] Steinrück H., The one-dimensional Wigner–Poisson problem and its relation to the Schrödinger–Poisson problem, SIAM J. Math. Anal.22 (4) (1992) 957-972. Zbl0738.35077
  33. [33] Stroscio M.A., Moment-equation representation of the dissipative quantum Liouville equation, Superlattices and Microstructures2 (1986) 83-87. 
  34. [34] Wigner E., On the quantum correction for thermodynamic equilibrium, Phys. Rev.40 (1932) 749-759. Zbl58.0948.07JFM58.0948.07

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.