On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions
José Luis López; Jesús Montejo–Gámez
Nanoscale Systems: Mathematical Modeling, Theory and Applications (2013)
- Volume: 2, page 49-80
- ISSN: 2299-3290
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. Alicki, K. Lendi, Quantum dynamical semigroups and applications, Springer, Berlin, (1987). Zbl0652.46055
- V. Ambegaokar, Quantum brownian motion and its classical limit, Berichte der Bunsengesellschaft für Physikalische Chemie, 95, 400–404 (1991).
- M. G. Ancona, Density–gradient theory analysis of electron distributions in heterostructures, Superlattics and Microstructures, 7, 119–130 (1990).
- P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys. 287, 657–686 (2009). Zbl1177.82127
- A. Arnold, Mathematical properties of quantum evolution equations. In: G. Allaire, A. Arnold, P. Degond, and T. Y. Hou. Quantum Transport–Modelling, Analysis and Asymptotics. Lect. Notes Math. 1946, 45–109 (2008).
- A. Arnold, J. A. Carrillo, I. Gamba, C.–W. Shu, Low and high field scaling limits for the Vlasov– and Wigner– Poisson–Fokker–Planck systems, Transp. Theory Stat. Phys. 100, 121–153 (2001). [Crossref] Zbl1106.82381
- A. Arnold, E. Dhamo, C. Mancini, Dispersive effects in quantum kinetic equations, Indiana Univ. Math. J. 56, 1299–1332 (2007). Zbl1161.35040
- A. Arnold, E. Dhamo, C. Mancini, The Wigner–Poisson–Fokker–Planck system: global–in–time solutions and dispersive effects. Annales de l’IHP (C)–Analyse non lineaire 24, 645–676 (2007). Zbl1121.82031
- A. Arnold, F. Fagnola, L. Neumann, Quantum Fokker–Planck models: the Lindblad and Wigner approaches. Quantum Probability and related Topics, Proceedings of the 28th Conference (Series: QP–PQ: Quantum Probability and White Noise Analysis–Vol. 23), J.C. García, R. Quezada, S. B. Sontz (Eds.), World Scientific, (2008). Zbl1180.81089
- A. Arnold, A. Jüngel, Multi–scale modeling of quantum semiconductor devices. In Analysis, modeling and simulation multi scale problems, A. Mielke ed., Springer, Berlin–Heidelberg, 331–363 (2006).
- A. Arnold, J. L. López, P. A. Markowich, J. Soler, An analysis of quantum Fokker–Planck models: a Wigner function approach, Rev. Mat. Iberoamericana 20, 771–814 (2004). [Crossref] Zbl1062.35097
- G. Auberson, P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations, J. Math. Phys. 35, 4028–4040 (1994). [Crossref] Zbl0813.35112
- A. V. Avdeenkov, K. G. Zloshchastiev, Quantum Bose liquids with logarithmic nonlinearity: self–sustainability and emergence of spatial extent, J. Phys. B.: At. Mol. Opt. Phys. 44, 195303 (2011). [Crossref]
- P. Bechouche, F. Poupaud, J. Soler, Quantum transport and Boltzmann operators, J. Stat. Phys. 122, 417–436 (2006). [Crossref] Zbl1149.82338
- F. Benatti, R. Floreanini, Open quantum dynamics: Complete positivity and entanglement, Int. J. Mod. Phys. B 19, 3063–3139 (2005). [Crossref] Zbl1152.81861
- I. Bialynicki–Birula, On the linearity of the Schrödinger equation, Brazilian J. Phys. 35, 211–215 (2005),.
- I. Bialynicki–Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys. 100, 62–93 (1976). [Crossref]
- I. Bialynicki–Birula, J. Mycielski, Gaussons: solitons of the logarithmic Schrödinger equation, Physica Scripta 209, 539–544 (1979). Zbl1063.81528
- D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. I and II, Phys. Rev. 85, 166–179 & 180–193 (1952). [Crossref] Zbl0046.21004
- O. Bokanowski, J. L. López, J. Soler, On an exchange interaction model for quantum transport: the Schrödinger– Poisson–Slater system, Math. Models Meth. Appl. Sci. 13, 1–16 (2003). Zbl1073.35188
- M. Bottiglieri, C. Godano, G. Lauro, Volcanic eruptions: Initial state of magma melt pulse unloading, Europhys. Lett. 97, 29001 (2012). [Crossref]
- L. Brüll, L. Lange, The Schrödinger–Langevin equation: Special solutions and nonexistence of solitary waves, J. Math. Phys. 25, 786–790 (1984). [Crossref] Zbl0555.35123
- S. Brull, F. Méhats, Derivation of viscous correction terms for the isothermal quantum euler model, Z. Angew. Math. Mech., 90, 219–230 (2010). [Crossref] Zbl05681525
- A. Budini, A. K. Chattah, M. O. Cáceres, On the quantum dissipative generator: weak–coupling approximation and stochastic approach, J. Phys. A: Math. Gen. 32, 631–646 (1999). [Crossref] Zbl0964.82033
- M. O. Cáceres, A. K. Chattah, On the Schrödinger–Langevin picture and the master equation, Physica A 234, 322–340 (1996).
- M. O. Cáceres, A. K. Chattah, The quantum random walk within the Schrödinger–Langevin approach, J. Molecular Liquids 71, 187–194 (1997).
- A. O. Caldeira, A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121, 587–616 (1983). Zbl0585.60082
- J. A. Cañizo, J. L. López, J. Nieto, Global L1 theory and regularity of the 3D nonlinear Wigner–Poisson–Fokker– Planck system, J. Diff. Equ. 198, 356–373 (2004). Zbl1039.35093
- F. Castella, L. Erdös, F. Frommlet, P. A. Markowich, Fokker–Planck equations as scaling limits of reversible quantum systems, J. Stat. Phys. 100, 543–601 (2000). [Crossref] Zbl0988.82038
- T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 22, Rio de Janeiro, (1989).
- T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear Analysis T. M. A. 7, 1127–1140 (1983). Zbl0529.35068
- T. Cazenave, A. Haraux, Equations d’évolution avec non linéarité logarithmique, Annals Fac. Sci. Univ. Toulouse 2, 21–55 (1980). [Crossref] Zbl0411.35051
- T. Cazenave, A. Haraux, Introduction aux problemes d’évolution semi–linéaires. Mathématiques et Applications #1. Ellipses, Paris, (1990). Zbl0786.35070
- A. M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of quantum dynamical semigroups, J. Funct. Anal. 118, 131–153 (1993). [Crossref] Zbl0801.46083
- C. Cid, J. Dolbeault, Defocusing nonlinear Schrödinger equation: confinement, stability and asymptotic stability, 2001 (preliminary version).
- N. Cufaro Petroni, S. De Martino, S. De Siena, F. Illuminati, Stochastic-hydrodynamic model of halo formation in charged particle beams, Phys. Rev. ST Accel. Beams 6, 034206 (2003).
- M. P. Davidson, Comments on the nonlinear Schrödinger equation, Il Nuovo Cimento B V116B, 1291–1296 (2001).
- E. B. Davies, Markovian master equations, Commun. Math. Phys. 39, 91–110 (1974). [Crossref] Zbl0294.60080
- E. B. Davies, Quantum Theory of Open Systems, Academic Press, New York, (1976). Zbl0388.46044
- L. De Broglie, Wave mechanics and the atomic structure of matter and radiation, J. Phys. 8, 225–241 (1927).
- D. De Falco, D. Tamascelli, Quantum annealing and the Schrödinger–Langevin–Kostin equation. Phys. Rev. A 79, 012315 (2009). [Crossref]
- S. De Martino, M. Falanga, C. Godano, G. Lauro, Logarithmic Schrödinger–like equation as a model for magma transport, Europhys. Lett. 63, 472–475 (2003). [Crossref]
- S. De Martino, G. Lauro, Soliton–like solutions for a capillary fluid, Waves and Stability in Continuous Media, Proceedings of the 12th Conference on WASCOM, (2003). Zbl1066.35092
- P. Degond, F. Méhats, C. Ringhofer, Quantum energy–transport and drift–diffusion models. J. Stat. Phys. 118, 625–665 (2005). [Crossref] Zbl1126.82314
- P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. 112, 587–628 (2003). [Crossref] Zbl1035.82028
- H. Dekker, Quantization of the linearly damped harmonic oscillator, Phys. Rev. A 16, 2126–2134 (1977). [Crossref]
- H. Dekker, M. C. Valsakumar, A fundamental constraint on quantum mechanical diffusion coefficients, Phys. Lett. A 104, 67–71 (1984). [Crossref]
- L. Delle Site, I. Hamilton, R. Mosna, Variational approach to dequantization, J. Phys. A 39, L229–L235 (2006). Zbl1089.81031
- B. Desjardins, C–K. Lin, On the semiclassical limit of the general modified NLS equation, J. Math. Anal. Appl. 260, 546–571 (2001). [Crossref] Zbl0980.35153
- B. Desjardins, C–K. Lin , T.–C. Tso, Semiclassical limit of the derivative nonlinear Schrödinger equation, Math. Models Meth. Appl. Sci. 10, 261–285 (2000). Zbl1012.81016
- L. Diósi, Caldeira–Leggett master equation and medium temperatures, Physica A 199, 517–526 (1993).
- L. Diósi, On high–temperature Markovian equation for quantum Brownian motion, Europhys. Lett. 22, 1–3 (1993). [Crossref]
- H. D. Doebner, G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A 162, 397–401 (1992). [Crossref]
- H. D. Doebner, G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations, J. Phys. A: Math. Gen. 27, 1771–1780 (1994). [Crossref] Zbl0842.35113
- H. D. Doebner, G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations, Phys. Rev. A 54, 3764–3771 (1996). [Crossref]
- H. D. Doebner, G. A. Goldin, P. Nattermann, A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure. In: Quantization, Coherent States and Complex Structures, J.–P. Antoine et al. (Eds.), 27–31, Plenum, (1996).
- I. Fényes,, Eine wahrscheinlichkeitstheoretische begrundung und interpretation der Quantenmechanik, Z. Phys. 132, 81–103 (1952). [Crossref] Zbl0048.44201
- D. Ferry, J. R. Zhou, Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys. Rev. B 48, 7944–7950 (1993). [Crossref]
- R. P. Feynman, F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118–173 (1963). [Crossref]
- W. R. Frensley, Boundary conditions for open quantum systems driven far from equilibrium, Rev. Mod. Phys. 62, 745–791 (1990). [Crossref]
- L. Fritsche, M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics, Ann. Phys. 12, 371–403 (2003). [Crossref] Zbl1037.81058
- P. Fuchs, A. Jüngel, M. von Renesse, On the Lagrangian structure of quantum fluid models. Preprint, Vienna University of Technology, 2011. Online available at http://www.asc.tuwien.ac.at/index.php?id=132. Zbl1276.35130
- S. Gao, Dissipative quantum dynamics with a Lindblad functional, Phys. Rev. Lett. 79, 3101–3104 (1997). [Crossref] Zbl0944.82018
- P. Garbaczewski, Modular Schrödinger equation and dynamical duality, Phys. Rev. E 78, 031101 (2008). [Crossref]
- C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54, 409–427 (1994). [Crossref] Zbl0815.35111
- P. Gérard, Remarques sur l’analyse semi–classique de l’équation de Schrödinger non linéaire, Séminaire EDP de l’École Politechnique, Palaiseau, France (1992–93), Lecture XIII.
- P. Gérard, P. A. Markowich, N. J. Mauser, F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50, 321–377 (1997). Zbl0881.35099
- N. Gisin, Microscopic derivation of a class of non–linear dissipative Schrödinger–like equations, Physica A 111, 364–370 (1982). [Crossref]
- V. Gorini, A. Kossakowski, E. C. G. Sudarshan, Completely positive dynamical semigroups of N–level systems, J. Math. Phys. 17, 821–825 (1976). [Crossref]
- E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proceedings of Amer. Math. Soc., 126, 523–530 (1998). Zbl0910.35115
- M. P. Gualdani, A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors, Europ. J. Appl. Math., 15, 577–595 (2004).
- M. P. Gualdani, A. Jüngel, G. Toscani, Exponential decay in time of solutions of the viscous quantum hydrodynamic equations, Appl. Math. Lett. 16, 1273–1278 (2003). [Crossref] Zbl1042.82047
- F. Guerra, Structural aspects of stochastic mechanics and stochastic field theory, Phys. Rep. 77, 263–312 (1981). [Crossref]
- P. Guerrero, Analysis of dissipation and diffusion mechanisms modeled by nonlinear PDEs in developmental biology and quantum mechanics, PhD Thesis, (2010).
- P. Guerrero, J. L. López, J. Montejo–Gámez, A wavefunction description of quantum Fokker–Planck dissipation: derivation, stationary dynamics and numerical approximation, in progress. Zbl1293.82018
- P. Guerrero, J. L. López, J. Nieto, Global H1 solvability of the 3D logarithmic Schrödinger equation, Nonlinear Analysis: Real World Applications 11, 79–87 (2012). Zbl1180.81071
- P. Guerrero, J. L. López, J. Montejo–Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner–Goldin type modeling quantum dissipation, J. Nonlinear Sci. 22, 631–663 (2012). [Crossref] Zbl1258.35003
- R. Harvey, Navier–Stokes analog of quantum mechanics, Phys. Rev. 152, 1115 (1966). [Crossref]
- E. F. Hefter, Application of the nonlinear Schrödinger equation with a logarithmic inhomegeneous term to nuclear physics, Phys. Rev. A 32, 1201–1204 (1985). [PubMed][Crossref]
- B. L. Hu, J. P. Paz, Y. Zhang, Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45, 2843–2861 (1992). [Crossref] Zbl1232.82011
- G. Iche, P. Nozieres, Quantum brownian motion of a heavy particle: an adiabatic expansion, Physica A 91, 485–506 (1978). [Crossref]
- A. Isar, A. Sandulescu, W. Scheid, Purity and decoherence in the theory of a damped harmonic oscillator, Phys. Rev. E 60, 6371–6381 (1999). [Crossref] Zbl1062.82505
- A. Jüngel, Transport Equations for Semiconductors, Lect. Notes Phys. 773, Springer, Berlin, (2009).
- A. Jüngel, Global weak solutions to compressible Navier–Stokes equations for quantum fluids, SIAM J. Math. Anal., 42, 1025–1045 (2010). [Crossref] Zbl1228.35083
- A. Jüngel, Dissipative quantum fluid models, Riv. Mat. Univ. Parma, 3, 217–290 (2012). Zbl1257.82085
- A. Jüngel, D. Mathes, A derivation of the isothermal quantum hydrodynamic equations using entropy minimization, Z. Angew. Math. Mech 85, 806–814 (2005). [Crossref] Zbl1077.76074
- A. Jüngel, D. Matthes, J.–P. Milisic, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math. 67, 46–68 (2006),. [Crossref] Zbl1121.35117
- A. Jüngel, M. C. Mariani, D. Rial, Local existence of solutions to the transient quantum hydrodynamic equations, Math. Models Meth. Appl. Sci. 12, 485–495 (2002). Zbl1215.81031
- A. Jüngel, J.–P. Milisic, Full compressible Navier–Stokes equations for quantum fluids: Derivation and numerical solution equations, Kinetic and related models 4, 785–807 (2011). Zbl1231.35148
- A. Jüngel, J. L. López, J. Montejo–Gámez, A new derivation of the quantum Navier–Stokes equations in the Wigner– Fokker–Planck approach, J. Stat. Phys. 145, 1661–1673 (2011). [Crossref] Zbl1238.82024
- G. Kaniadakis, A. M. Scarfone, Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities, Reports on Math. Phys., 48, 115–121 (2001). Zbl1078.35114
- A. Kossakowski, On necessary and sufficient conditions for a generator of a quantum dynamical semi–group, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys. 20, 1021–1025 (1972).
- M. D. Kostin, On the Schrödinger–Langevin equation, J. Chem. Phys. 57, 3589–3591 (1972). [Crossref]
- M. D. Kostin, Friction and dissipative phenomena in quantum mechanics, J. Stat. Phys. 12, 145–151 (1975). [Crossref]
- G. Lauro, A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrödinger equation, Geophys. and Astrophys. Fluid Dynamics 102, 373–380 (2008).
- N. A. Lemos, Dissipative forces and the algebra of operators in stochastic quantum mechanics, Phys. Lett. A 78, 239–241 (1980). [Crossref]
- H. Li, C–K. Lin, Semiclassical limit and well–posedness of nonlinear Schrödinger–Poisson, EJDE 93, 1–17 (2003). Zbl1055.35111
- G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48, 119–130 (1976). [Crossref] Zbl0343.47031
- P. L. Lions, T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9, 553–618 (1993). [Crossref]
- H. Liu, E. Tadmor, Semiclassical limit of the nonlinear Schrödinger–Poisson equation with subcritical initial data, Methods Appl. Anal. 9, 517–532 (2002). Zbl1166.35374
- J. L. López, Nonlinear Ginzburg–Landau–type approach to quantum dissipation, Phys. Rev. E 69, 026110 (2004). [Crossref]
- J. L. López, J. Montejo–Gámez, A hydrodynamic approach to multidimensional dissipation–based Schrödinger models from quantum Fokker–Planck dynamics, Physica D 238, 622–644 (2009). Zbl1160.37430
- J. L. López, J. Montejo–Gámez, On a rigorous interpretation of the quantum Schrödinger–Langevin operator in bounded domains, J. Math. Anal. Appl. 383, 365–378 (2011). [Crossref] Zbl1223.81126
- J. L. López, J. Montejo–Gámez, On viscous quantum hydrodynamics associated with nonlinear Schrödinger– Doebner–Goldin models, Kinetic and related models 5, 517–536 (2012). Zbl1261.81065
- J. L. López, J. Nieto, Global solutions of the mean–field, very high temperature Caldeira–Leggett master equation, Quart. Appl. Math. 64, 189–199 (2006). Zbl1115.82025
- E. Madelung, Quantentheorie in hydrodynamischer form, Z. Physik 40, 322–326 (1927). [Crossref] Zbl52.0969.06
- G. Manfredi, H. Haas, Self–consistent fluid model for a quantum electron gas, Phys. Rev. B 64, 075316 (2001). [Crossref]
- P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, New York, (1990). Zbl0765.35001
- F. Méhats, O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys. 140, 565–602 (2010). [Crossref] Zbl1201.82025
- J. Montejo–Gámez, Estudio de fenómenos cuánticos disipativos mediante ecuaciones en derivadas parciales en la formulación de Schrödinger, PhD Thesis, (2011).
- A. B. Nassar, Fluid formulation of a generalised Schrödinger–Langevin equation, J. Phys. A: Math. Gen 18, L509– L511 (1985). [Crossref]
- P. Nattermann, W. Scherer, Nonlinear gauge transformations and exact solutions of the Doebner–Goldin equation. In: Nonlinear, Deformed and Irreversible Quantum Systems, Doebner et al. (Eds.), 188–199, World Scientific, (1995). Zbl0942.81546
- P. Nattermann, R. Zhdanov, On integrable Doebner–Goldin equations, J. Phys. A 29, 2869–2886 (1996).
- E. Nelson, Derivation of the Schrödinger equation from Newtonian Mechanics, Phys. Rev. 150, 1079–1085 (1966). [Crossref]
- T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J. 45, 137–163 (1996). Zbl0859.35117
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, (1983). Zbl0516.47023
- E. Pollak, S. Zhang, Quantum dynamics for dissipative systems: A numerical study of the Wigner–Fokker–Planck equation, J. Chem. Phys. 118, 4357–4364 (2003).
- P. C. Sabatier, Multidimensional nonlinear Schrödinger equations with exponentially confined solutions, Inverse Problems 6, L47–L53 (1990). Zbl0725.35100
- O. Sánchez, J. Soler, Long–time dynamics of the Schrödinger–Poisson–Slater system, J. Stat. Phys. 114, 179–204 (2004). [Crossref] Zbl1060.82039
- A. L. Sanin, A. A. Smirnovsky, Oscillatory motion in confined potential systems with dissipation in the context of the Schrödinger–Langevin–Kostin equation, Phys. Lett. A 372, 21–27 (2007). [Crossref] Zbl1217.81070
- A. Scarfone, Gauge equivalence among quantum nonlinear many body systems, Act. Appl. Math. 102, 179–217 (2008). [Crossref] Zbl1178.35350
- B.-S. K. Skagerstam, Stochastic mechanics and dissipative forces, J. Math. Phys. 18, 308–311 (1977). [Crossref]
- C. Sparber, J. A. Carrillo, J. Dolbeault, P. A. Markowich, On the long time behavior of the quantum Fokker–Planck equation. Monatsh. Math. 141, 237–257 (2004). [Crossref] Zbl1061.35095
- Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Japan 75, 082001 (2006). [Crossref]
- H. Teissmann, The Cauchy problem for the Doebner–Goldin equation, Physical applications and mathematical aspects of geometry, groups and algebras, H. D. Doebner, P. Nattermann and W. Scherer (Eds.), World Scientific, 433–438 (1997).
- W. G. Unruh, W. H. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D 40, 1071–1094 (1989). [Crossref]
- A. G. Ushveridze, Dissipative quantum mechanics. A special Doebner–Goldin equation, its properties and exact solutions, Phys. Lett. A 185, 123–127 (1994). Zbl0959.81523
- A. G. Ushveridze, The special Doebner–Goldin equation as a fundamental equation of dissipative quantum mechanics, Phys. Lett. A 185, 128–132 (1994). Zbl0959.81524
- B. Vacchini, Completely positive quantum dissipation, Phys. Rev. Lett. 84, 1374–1377 (2000). [PubMed][Crossref] Zbl1042.82590
- P. Ván, T. Fülöp, Stability of stationary solutions of the Schrödinger–Langevin equation, Phys. Lett. A 323, 374–381 (2004). [Crossref] Zbl1118.81450
- N. G. Van Kampen, Stochastic process in Physics and Chemistry (2nd edition), North–Holland, Amsterdam , (1992).
- T. C. Wallstrom, Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations, Phys. Rev. A 49, 1613–1617 (1994). [PubMed][Crossref]
- U. Weiss, Quantum dissipative systems, World Scientific, Singapore, (1993). Zbl1137.81300
- E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759 (1932). [Crossref] Zbl58.0948.07
- Y. Yan, Quantum Fokker–Planck theory in a non–Gaussian–Markovian medium, Phys. Rev. A 58, 2721–2732 (1998). [Crossref]
- K. Yasue, A note on the derivation of the Schrödinger–Langevin equation, J. Stat. Phys. 16, 113–116 (1977). [Crossref]