On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions

José Luis López; Jesús Montejo–Gámez

Nanoscale Systems: Mathematical Modeling, Theory and Applications (2013)

  • Volume: 2, page 49-80
  • ISSN: 2299-3290

Abstract

top
This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes type.

How to cite

top

José Luis López, and Jesús Montejo–Gámez. "On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions." Nanoscale Systems: Mathematical Modeling, Theory and Applications 2 (2013): 49-80. <http://eudml.org/doc/267225>.

@article{JoséLuisLópez2013,
abstract = {This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes type.},
author = {José Luis López, Jesús Montejo–Gámez},
journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
keywords = {Open quantum system; Wigner-Fokker-Planck equation; Doebner-Goldin equations; nonlinear Schrödinger equations; quantum viscous hydrodynamic equations; quantum Navier-Stokes equations; dissipative quantum mechanics; logarithmic nonlinearity; nonlinear Gauge transformations; Madelung decomposition; osmotic momentum; open quantum system; nonlinear gauge transformations},
language = {eng},
pages = {49-80},
title = {On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions},
url = {http://eudml.org/doc/267225},
volume = {2},
year = {2013},
}

TY - JOUR
AU - José Luis López
AU - Jesús Montejo–Gámez
TI - On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions
JO - Nanoscale Systems: Mathematical Modeling, Theory and Applications
PY - 2013
VL - 2
SP - 49
EP - 80
AB - This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes type.
LA - eng
KW - Open quantum system; Wigner-Fokker-Planck equation; Doebner-Goldin equations; nonlinear Schrödinger equations; quantum viscous hydrodynamic equations; quantum Navier-Stokes equations; dissipative quantum mechanics; logarithmic nonlinearity; nonlinear Gauge transformations; Madelung decomposition; osmotic momentum; open quantum system; nonlinear gauge transformations
UR - http://eudml.org/doc/267225
ER -

References

top
  1. R. Alicki, K. Lendi, Quantum dynamical semigroups and applications, Springer, Berlin, (1987). Zbl0652.46055
  2. V. Ambegaokar, Quantum brownian motion and its classical limit, Berichte der Bunsengesellschaft für Physikalische Chemie, 95, 400–404 (1991). 
  3. M. G. Ancona, Density–gradient theory analysis of electron distributions in heterostructures, Superlattics and Microstructures, 7, 119–130 (1990). 
  4. P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys. 287, 657–686 (2009). Zbl1177.82127
  5. A. Arnold, Mathematical properties of quantum evolution equations. In: G. Allaire, A. Arnold, P. Degond, and T. Y. Hou. Quantum Transport–Modelling, Analysis and Asymptotics. Lect. Notes Math. 1946, 45–109 (2008). 
  6. A. Arnold, J. A. Carrillo, I. Gamba, C.–W. Shu, Low and high field scaling limits for the Vlasov– and Wigner– Poisson–Fokker–Planck systems, Transp. Theory Stat. Phys. 100, 121–153 (2001). [Crossref] Zbl1106.82381
  7. A. Arnold, E. Dhamo, C. Mancini, Dispersive effects in quantum kinetic equations, Indiana Univ. Math. J. 56, 1299–1332 (2007). Zbl1161.35040
  8. A. Arnold, E. Dhamo, C. Mancini, The Wigner–Poisson–Fokker–Planck system: global–in–time solutions and dispersive effects. Annales de l’IHP (C)–Analyse non lineaire 24, 645–676 (2007). Zbl1121.82031
  9. A. Arnold, F. Fagnola, L. Neumann, Quantum Fokker–Planck models: the Lindblad and Wigner approaches. Quantum Probability and related Topics, Proceedings of the 28th Conference (Series: QP–PQ: Quantum Probability and White Noise Analysis–Vol. 23), J.C. García, R. Quezada, S. B. Sontz (Eds.), World Scientific, (2008). Zbl1180.81089
  10. A. Arnold, A. Jüngel, Multi–scale modeling of quantum semiconductor devices. In Analysis, modeling and simulation multi scale problems, A. Mielke ed., Springer, Berlin–Heidelberg, 331–363 (2006). 
  11. A. Arnold, J. L. López, P. A. Markowich, J. Soler, An analysis of quantum Fokker–Planck models: a Wigner function approach, Rev. Mat. Iberoamericana 20, 771–814 (2004). [Crossref] Zbl1062.35097
  12. G. Auberson, P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations, J. Math. Phys. 35, 4028–4040 (1994). [Crossref] Zbl0813.35112
  13. A. V. Avdeenkov, K. G. Zloshchastiev, Quantum Bose liquids with logarithmic nonlinearity: self–sustainability and emergence of spatial extent, J. Phys. B.: At. Mol. Opt. Phys. 44, 195303 (2011). [Crossref] 
  14. P. Bechouche, F. Poupaud, J. Soler, Quantum transport and Boltzmann operators, J. Stat. Phys. 122, 417–436 (2006). [Crossref] Zbl1149.82338
  15. F. Benatti, R. Floreanini, Open quantum dynamics: Complete positivity and entanglement, Int. J. Mod. Phys. B 19, 3063–3139 (2005). [Crossref] Zbl1152.81861
  16. I. Bialynicki–Birula, On the linearity of the Schrödinger equation, Brazilian J. Phys. 35, 211–215 (2005),. 
  17. I. Bialynicki–Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys. 100, 62–93 (1976). [Crossref] 
  18. I. Bialynicki–Birula, J. Mycielski, Gaussons: solitons of the logarithmic Schrödinger equation, Physica Scripta 209, 539–544 (1979). Zbl1063.81528
  19. D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. I and II, Phys. Rev. 85, 166–179 & 180–193 (1952). [Crossref] Zbl0046.21004
  20. O. Bokanowski, J. L. López, J. Soler, On an exchange interaction model for quantum transport: the Schrödinger– Poisson–Slater system, Math. Models Meth. Appl. Sci. 13, 1–16 (2003). Zbl1073.35188
  21. M. Bottiglieri, C. Godano, G. Lauro, Volcanic eruptions: Initial state of magma melt pulse unloading, Europhys. Lett. 97, 29001 (2012). [Crossref] 
  22. L. Brüll, L. Lange, The Schrödinger–Langevin equation: Special solutions and nonexistence of solitary waves, J. Math. Phys. 25, 786–790 (1984). [Crossref] Zbl0555.35123
  23. S. Brull, F. Méhats, Derivation of viscous correction terms for the isothermal quantum euler model, Z. Angew. Math. Mech., 90, 219–230 (2010). [Crossref] Zbl05681525
  24. A. Budini, A. K. Chattah, M. O. Cáceres, On the quantum dissipative generator: weak–coupling approximation and stochastic approach, J. Phys. A: Math. Gen. 32, 631–646 (1999). [Crossref] Zbl0964.82033
  25. M. O. Cáceres, A. K. Chattah, On the Schrödinger–Langevin picture and the master equation, Physica A 234, 322–340 (1996). 
  26. M. O. Cáceres, A. K. Chattah, The quantum random walk within the Schrödinger–Langevin approach, J. Molecular Liquids 71, 187–194 (1997). 
  27. A. O. Caldeira, A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121, 587–616 (1983). Zbl0585.60082
  28. J. A. Cañizo, J. L. López, J. Nieto, Global L1 theory and regularity of the 3D nonlinear Wigner–Poisson–Fokker– Planck system, J. Diff. Equ. 198, 356–373 (2004). Zbl1039.35093
  29. F. Castella, L. Erdös, F. Frommlet, P. A. Markowich, Fokker–Planck equations as scaling limits of reversible quantum systems, J. Stat. Phys. 100, 543–601 (2000). [Crossref] Zbl0988.82038
  30. T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Métodos Matemáticos 22, Rio de Janeiro, (1989). 
  31. T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear Analysis T. M. A. 7, 1127–1140 (1983). Zbl0529.35068
  32. T. Cazenave, A. Haraux, Equations d’évolution avec non linéarité logarithmique, Annals Fac. Sci. Univ. Toulouse 2, 21–55 (1980). [Crossref] Zbl0411.35051
  33. T. Cazenave, A. Haraux, Introduction aux problemes d’évolution semi–linéaires. Mathématiques et Applications #1. Ellipses, Paris, (1990). Zbl0786.35070
  34. A. M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of quantum dynamical semigroups, J. Funct. Anal. 118, 131–153 (1993). [Crossref] Zbl0801.46083
  35. C. Cid, J. Dolbeault, Defocusing nonlinear Schrödinger equation: confinement, stability and asymptotic stability, 2001 (preliminary version). 
  36. N. Cufaro Petroni, S. De Martino, S. De Siena, F. Illuminati, Stochastic-hydrodynamic model of halo formation in charged particle beams, Phys. Rev. ST Accel. Beams 6, 034206 (2003). 
  37. M. P. Davidson, Comments on the nonlinear Schrödinger equation, Il Nuovo Cimento B V116B, 1291–1296 (2001). 
  38. E. B. Davies, Markovian master equations, Commun. Math. Phys. 39, 91–110 (1974). [Crossref] Zbl0294.60080
  39. E. B. Davies, Quantum Theory of Open Systems, Academic Press, New York, (1976). Zbl0388.46044
  40. L. De Broglie, Wave mechanics and the atomic structure of matter and radiation, J. Phys. 8, 225–241 (1927). 
  41. D. De Falco, D. Tamascelli, Quantum annealing and the Schrödinger–Langevin–Kostin equation. Phys. Rev. A 79, 012315 (2009). [Crossref] 
  42. S. De Martino, M. Falanga, C. Godano, G. Lauro, Logarithmic Schrödinger–like equation as a model for magma transport, Europhys. Lett. 63, 472–475 (2003). [Crossref] 
  43. S. De Martino, G. Lauro, Soliton–like solutions for a capillary fluid, Waves and Stability in Continuous Media, Proceedings of the 12th Conference on WASCOM, (2003). Zbl1066.35092
  44. P. Degond, F. Méhats, C. Ringhofer, Quantum energy–transport and drift–diffusion models. J. Stat. Phys. 118, 625–665 (2005). [Crossref] Zbl1126.82314
  45. P. Degond, C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. 112, 587–628 (2003). [Crossref] Zbl1035.82028
  46. H. Dekker, Quantization of the linearly damped harmonic oscillator, Phys. Rev. A 16, 2126–2134 (1977). [Crossref] 
  47. H. Dekker, M. C. Valsakumar, A fundamental constraint on quantum mechanical diffusion coefficients, Phys. Lett. A 104, 67–71 (1984). [Crossref] 
  48. L. Delle Site, I. Hamilton, R. Mosna, Variational approach to dequantization, J. Phys. A 39, L229–L235 (2006). Zbl1089.81031
  49. B. Desjardins, C–K. Lin, On the semiclassical limit of the general modified NLS equation, J. Math. Anal. Appl. 260, 546–571 (2001). [Crossref] Zbl0980.35153
  50. B. Desjardins, C–K. Lin , T.–C. Tso, Semiclassical limit of the derivative nonlinear Schrödinger equation, Math. Models Meth. Appl. Sci. 10, 261–285 (2000). Zbl1012.81016
  51. L. Diósi, Caldeira–Leggett master equation and medium temperatures, Physica A 199, 517–526 (1993). 
  52. L. Diósi, On high–temperature Markovian equation for quantum Brownian motion, Europhys. Lett. 22, 1–3 (1993). [Crossref] 
  53. H. D. Doebner, G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A 162, 397–401 (1992). [Crossref] 
  54. H. D. Doebner, G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations, J. Phys. A: Math. Gen. 27, 1771–1780 (1994). [Crossref] Zbl0842.35113
  55. H. D. Doebner, G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations, Phys. Rev. A 54, 3764–3771 (1996). [Crossref] 
  56. H. D. Doebner, G. A. Goldin, P. Nattermann, A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure. In: Quantization, Coherent States and Complex Structures, J.–P. Antoine et al. (Eds.), 27–31, Plenum, (1996). 
  57. I. Fényes,, Eine wahrscheinlichkeitstheoretische begrundung und interpretation der Quantenmechanik, Z. Phys. 132, 81–103 (1952). [Crossref] Zbl0048.44201
  58. D. Ferry, J. R. Zhou, Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys. Rev. B 48, 7944–7950 (1993). [Crossref] 
  59. R. P. Feynman, F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118–173 (1963). [Crossref] 
  60. W. R. Frensley, Boundary conditions for open quantum systems driven far from equilibrium, Rev. Mod. Phys. 62, 745–791 (1990). [Crossref] 
  61. L. Fritsche, M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics, Ann. Phys. 12, 371–403 (2003). [Crossref] Zbl1037.81058
  62. P. Fuchs, A. Jüngel, M. von Renesse, On the Lagrangian structure of quantum fluid models. Preprint, Vienna University of Technology, 2011. Online available at http://www.asc.tuwien.ac.at/index.php?id=132. Zbl1276.35130
  63. S. Gao, Dissipative quantum dynamics with a Lindblad functional, Phys. Rev. Lett. 79, 3101–3104 (1997). [Crossref] Zbl0944.82018
  64. P. Garbaczewski, Modular Schrödinger equation and dynamical duality, Phys. Rev. E 78, 031101 (2008). [Crossref] 
  65. C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54, 409–427 (1994). [Crossref] Zbl0815.35111
  66. P. Gérard, Remarques sur l’analyse semi–classique de l’équation de Schrödinger non linéaire, Séminaire EDP de l’École Politechnique, Palaiseau, France (1992–93), Lecture XIII. 
  67. P. Gérard, P. A. Markowich, N. J. Mauser, F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50, 321–377 (1997). Zbl0881.35099
  68. N. Gisin, Microscopic derivation of a class of non–linear dissipative Schrödinger–like equations, Physica A 111, 364–370 (1982). [Crossref] 
  69. V. Gorini, A. Kossakowski, E. C. G. Sudarshan, Completely positive dynamical semigroups of N–level systems, J. Math. Phys. 17, 821–825 (1976). [Crossref] 
  70. E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proceedings of Amer. Math. Soc., 126, 523–530 (1998). Zbl0910.35115
  71. M. P. Gualdani, A. Jüngel, Analysis of the viscous quantum hydrodynamic equations for semiconductors, Europ. J. Appl. Math., 15, 577–595 (2004). 
  72. M. P. Gualdani, A. Jüngel, G. Toscani, Exponential decay in time of solutions of the viscous quantum hydrodynamic equations, Appl. Math. Lett. 16, 1273–1278 (2003). [Crossref] Zbl1042.82047
  73. F. Guerra, Structural aspects of stochastic mechanics and stochastic field theory, Phys. Rep. 77, 263–312 (1981). [Crossref] 
  74. P. Guerrero, Analysis of dissipation and diffusion mechanisms modeled by nonlinear PDEs in developmental biology and quantum mechanics, PhD Thesis, (2010). 
  75. P. Guerrero, J. L. López, J. Montejo–Gámez, A wavefunction description of quantum Fokker–Planck dissipation: derivation, stationary dynamics and numerical approximation, in progress. Zbl1293.82018
  76. P. Guerrero, J. L. López, J. Nieto, Global H1 solvability of the 3D logarithmic Schrödinger equation, Nonlinear Analysis: Real World Applications 11, 79–87 (2012). Zbl1180.81071
  77. P. Guerrero, J. L. López, J. Montejo–Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner–Goldin type modeling quantum dissipation, J. Nonlinear Sci. 22, 631–663 (2012). [Crossref] Zbl1258.35003
  78. R. Harvey, Navier–Stokes analog of quantum mechanics, Phys. Rev. 152, 1115 (1966). [Crossref] 
  79. E. F. Hefter, Application of the nonlinear Schrödinger equation with a logarithmic inhomegeneous term to nuclear physics, Phys. Rev. A 32, 1201–1204 (1985). [PubMed][Crossref] 
  80. B. L. Hu, J. P. Paz, Y. Zhang, Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45, 2843–2861 (1992). [Crossref] Zbl1232.82011
  81. G. Iche, P. Nozieres, Quantum brownian motion of a heavy particle: an adiabatic expansion, Physica A 91, 485–506 (1978). [Crossref] 
  82. A. Isar, A. Sandulescu, W. Scheid, Purity and decoherence in the theory of a damped harmonic oscillator, Phys. Rev. E 60, 6371–6381 (1999). [Crossref] Zbl1062.82505
  83. A. Jüngel, Transport Equations for Semiconductors, Lect. Notes Phys. 773, Springer, Berlin, (2009). 
  84. A. Jüngel, Global weak solutions to compressible Navier–Stokes equations for quantum fluids, SIAM J. Math. Anal., 42, 1025–1045 (2010). [Crossref] Zbl1228.35083
  85. A. Jüngel, Dissipative quantum fluid models, Riv. Mat. Univ. Parma, 3, 217–290 (2012). Zbl1257.82085
  86. A. Jüngel, D. Mathes, A derivation of the isothermal quantum hydrodynamic equations using entropy minimization, Z. Angew. Math. Mech 85, 806–814 (2005). [Crossref] Zbl1077.76074
  87. A. Jüngel, D. Matthes, J.–P. Milisic, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math. 67, 46–68 (2006),. [Crossref] Zbl1121.35117
  88. A. Jüngel, M. C. Mariani, D. Rial, Local existence of solutions to the transient quantum hydrodynamic equations, Math. Models Meth. Appl. Sci. 12, 485–495 (2002). Zbl1215.81031
  89. A. Jüngel, J.–P. Milisic, Full compressible Navier–Stokes equations for quantum fluids: Derivation and numerical solution equations, Kinetic and related models 4, 785–807 (2011). Zbl1231.35148
  90. A. Jüngel, J. L. López, J. Montejo–Gámez, A new derivation of the quantum Navier–Stokes equations in the Wigner– Fokker–Planck approach, J. Stat. Phys. 145, 1661–1673 (2011). [Crossref] Zbl1238.82024
  91. G. Kaniadakis, A. M. Scarfone, Nonlinear transformation for a class of gauged Schrödinger equations with complex nonlinearities, Reports on Math. Phys., 48, 115–121 (2001). Zbl1078.35114
  92. A. Kossakowski, On necessary and sufficient conditions for a generator of a quantum dynamical semi–group, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys. 20, 1021–1025 (1972). 
  93. M. D. Kostin, On the Schrödinger–Langevin equation, J. Chem. Phys. 57, 3589–3591 (1972). [Crossref] 
  94. M. D. Kostin, Friction and dissipative phenomena in quantum mechanics, J. Stat. Phys. 12, 145–151 (1975). [Crossref] 
  95. G. Lauro, A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrödinger equation, Geophys. and Astrophys. Fluid Dynamics 102, 373–380 (2008). 
  96. N. A. Lemos, Dissipative forces and the algebra of operators in stochastic quantum mechanics, Phys. Lett. A 78, 239–241 (1980). [Crossref] 
  97. H. Li, C–K. Lin, Semiclassical limit and well–posedness of nonlinear Schrödinger–Poisson, EJDE 93, 1–17 (2003). Zbl1055.35111
  98. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48, 119–130 (1976). [Crossref] Zbl0343.47031
  99. P. L. Lions, T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9, 553–618 (1993). [Crossref] 
  100. H. Liu, E. Tadmor, Semiclassical limit of the nonlinear Schrödinger–Poisson equation with subcritical initial data, Methods Appl. Anal. 9, 517–532 (2002). Zbl1166.35374
  101. J. L. López, Nonlinear Ginzburg–Landau–type approach to quantum dissipation, Phys. Rev. E 69, 026110 (2004). [Crossref] 
  102. J. L. López, J. Montejo–Gámez, A hydrodynamic approach to multidimensional dissipation–based Schrödinger models from quantum Fokker–Planck dynamics, Physica D 238, 622–644 (2009). Zbl1160.37430
  103. J. L. López, J. Montejo–Gámez, On a rigorous interpretation of the quantum Schrödinger–Langevin operator in bounded domains, J. Math. Anal. Appl. 383, 365–378 (2011). [Crossref] Zbl1223.81126
  104. J. L. López, J. Montejo–Gámez, On viscous quantum hydrodynamics associated with nonlinear Schrödinger– Doebner–Goldin models, Kinetic and related models 5, 517–536 (2012). Zbl1261.81065
  105. J. L. López, J. Nieto, Global solutions of the mean–field, very high temperature Caldeira–Leggett master equation, Quart. Appl. Math. 64, 189–199 (2006). Zbl1115.82025
  106. E. Madelung, Quantentheorie in hydrodynamischer form, Z. Physik 40, 322–326 (1927). [Crossref] Zbl52.0969.06
  107. G. Manfredi, H. Haas, Self–consistent fluid model for a quantum electron gas, Phys. Rev. B 64, 075316 (2001). [Crossref] 
  108. P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, New York, (1990). Zbl0765.35001
  109. F. Méhats, O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys. 140, 565–602 (2010). [Crossref] Zbl1201.82025
  110. J. Montejo–Gámez, Estudio de fenómenos cuánticos disipativos mediante ecuaciones en derivadas parciales en la formulación de Schrödinger, PhD Thesis, (2011). 
  111. A. B. Nassar, Fluid formulation of a generalised Schrödinger–Langevin equation, J. Phys. A: Math. Gen 18, L509– L511 (1985). [Crossref] 
  112. P. Nattermann, W. Scherer, Nonlinear gauge transformations and exact solutions of the Doebner–Goldin equation. In: Nonlinear, Deformed and Irreversible Quantum Systems, Doebner et al. (Eds.), 188–199, World Scientific, (1995). Zbl0942.81546
  113. P. Nattermann, R. Zhdanov, On integrable Doebner–Goldin equations, J. Phys. A 29, 2869–2886 (1996). 
  114. E. Nelson, Derivation of the Schrödinger equation from Newtonian Mechanics, Phys. Rev. 150, 1079–1085 (1966). [Crossref] 
  115. T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J. 45, 137–163 (1996). Zbl0859.35117
  116. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, (1983). Zbl0516.47023
  117. E. Pollak, S. Zhang, Quantum dynamics for dissipative systems: A numerical study of the Wigner–Fokker–Planck equation, J. Chem. Phys. 118, 4357–4364 (2003). 
  118. P. C. Sabatier, Multidimensional nonlinear Schrödinger equations with exponentially confined solutions, Inverse Problems 6, L47–L53 (1990). Zbl0725.35100
  119. O. Sánchez, J. Soler, Long–time dynamics of the Schrödinger–Poisson–Slater system, J. Stat. Phys. 114, 179–204 (2004). [Crossref] Zbl1060.82039
  120. A. L. Sanin, A. A. Smirnovsky, Oscillatory motion in confined potential systems with dissipation in the context of the Schrödinger–Langevin–Kostin equation, Phys. Lett. A 372, 21–27 (2007). [Crossref] Zbl1217.81070
  121. A. Scarfone, Gauge equivalence among quantum nonlinear many body systems, Act. Appl. Math. 102, 179–217 (2008). [Crossref] Zbl1178.35350
  122. B.-S. K. Skagerstam, Stochastic mechanics and dissipative forces, J. Math. Phys. 18, 308–311 (1977). [Crossref] 
  123. C. Sparber, J. A. Carrillo, J. Dolbeault, P. A. Markowich, On the long time behavior of the quantum Fokker–Planck equation. Monatsh. Math. 141, 237–257 (2004). [Crossref] Zbl1061.35095
  124. Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Japan 75, 082001 (2006). [Crossref] 
  125. H. Teissmann, The Cauchy problem for the Doebner–Goldin equation, Physical applications and mathematical aspects of geometry, groups and algebras, H. D. Doebner, P. Nattermann and W. Scherer (Eds.), World Scientific, 433–438 (1997). 
  126. W. G. Unruh, W. H. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D 40, 1071–1094 (1989). [Crossref] 
  127. A. G. Ushveridze, Dissipative quantum mechanics. A special Doebner–Goldin equation, its properties and exact solutions, Phys. Lett. A 185, 123–127 (1994). Zbl0959.81523
  128. A. G. Ushveridze, The special Doebner–Goldin equation as a fundamental equation of dissipative quantum mechanics, Phys. Lett. A 185, 128–132 (1994). Zbl0959.81524
  129. B. Vacchini, Completely positive quantum dissipation, Phys. Rev. Lett. 84, 1374–1377 (2000). [PubMed][Crossref] Zbl1042.82590
  130. P. Ván, T. Fülöp, Stability of stationary solutions of the Schrödinger–Langevin equation, Phys. Lett. A 323, 374–381 (2004). [Crossref] Zbl1118.81450
  131. N. G. Van Kampen, Stochastic process in Physics and Chemistry (2nd edition), North–Holland, Amsterdam , (1992). 
  132. T. C. Wallstrom, Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations, Phys. Rev. A 49, 1613–1617 (1994). [PubMed][Crossref] 
  133. U. Weiss, Quantum dissipative systems, World Scientific, Singapore, (1993). Zbl1137.81300
  134. E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759 (1932). [Crossref] Zbl58.0948.07
  135. Y. Yan, Quantum Fokker–Planck theory in a non–Gaussian–Markovian medium, Phys. Rev. A 58, 2721–2732 (1998). [Crossref] 
  136. K. Yasue, A note on the derivation of the Schrödinger–Langevin equation, J. Stat. Phys. 16, 113–116 (1977). [Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.